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Abstract

Using a principal-agent framework in which the agent chooses the joint distribution over
all contractible and non-contractible signals, we provide a theoretical justification for
contracting on aggregated accounting estimates. The optimal contracting process can
be decomposed into three stages: estimating individual items that the principal values,
aggregating those estimates using the weights in the principal’s objective (as opposed
to weights driven by sensitivity or precision), and compensating the agent based on the
aggregated estimate. In a highly tractable specification of our model in which normal
distributions arise endogenously, we show that optimal measurement rules are conservative
yet produce unbiased estimates and we rationalize the immediate expensing of R&D, the
capitalization of PP&E, the accrual of credit sales, and fair value accounting for certain
financial investments.
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1 Introduction

Executive compensation contracts routinely tie CEO pay to highly aggregated accounting mea-

sures such as total revenue or net income.1 However, classical agency theory suggests that

aggregated accounting estimates are inefficient contracting measures, because these aggregates

are constructed by simply adding up account values, not by weighting the accounts according

to their relative sensitivities and precision as in Banker and Datar [1989]. Absent imposing ad-

ditional frictions to the moral hazard problem, agency theory has yet to explain why aggregated

accounting measures like earnings are so widely used in executive compensation contracts. Us-

ing an unconventional but well-grounded approach to moral hazard where the agent can affect

the entire shape of the outcome distribution, we show that contracting on aggregated account-

ing estimates can be just as efficient as contracting on all of the information used to measure

their underlying components.

The atypical ingredient in our model is in how the agent’s action is represented. Beginning

with the seminal work of Holmström [1979], agency theory has been preponderated by the

parameterized distribution formulation of the moral hazard problem, which models the agent’s

actions as affecting the parameter(s) of a distribution whose form is outside of the agent’s

control. For example, it is common to assume that the agent chooses the first moment of a

normal distribution (e.g. Holmström and Milgrom [1991], Feltham and Xie [1994]); here, the

agent can mean-shift the normal distribution but has no control over its shape. Less commonly,

some papers assume that the agent influences both the first and second moments of a normal

distribution (e.g. Meth [1996]), but even here the agent’s influence is quite limited. He has

no way of affecting skewness or kurtosis or of introducing discontinuities; by assumption, the

only possibility is a normal distribution. The same limitations apply when the parametric

1For example, De Angelis and Grinstein [2015] report that four in five CEO performance-based awards are tied
to accounting metrics (Figure 1), with income and sales measures among the most common.
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form is unspecified, for instance when the agent is modeled as choosing generic parameter a

(often called “effort”) in the distribution over x, denoted f(x; a). The agent’s choice of a entails

choosing a distribution from a restricted parametric set, and there is nothing he can do to break

free of the functional form of f(x; a).

We see the parametric approach as quite limiting, and in this paper we take an alternative

(though not novel) approach. We use what Hart and Holmström [1987] termed the general-

ized distribution formulation of the moral hazard problem, which assumes that the agent can

implement any distribution nonparametrically. This generalized approach, in our view, better

reflects the flexibility that firm managers have in running a company. The sheer number of

books proffering business advice (over 80,000 titles on Amazon) suggests that a CEO’s inputs

are far more complex than simply exerting effort along one or more dimensions (else those

books could be replaced by the maxim, “Try hard.”) Many empirical papers in the accounting

literature take it as given that executives can influence distributions nonparametrically; for ex-

ample, discontinuities around zero or analyst forecasts are often attributed to the management

of real or measured earnings (e.g., Burgstahler and Dichev [1997], Roychowdhury [2006]).

We use the generalized distribution approach to study two central accounting issues: mea-

surement and aggregation. Measurement is the process by which the principal estimates unob-

servable variables, and aggregation is the process by which multiple measures are combined into

a composite one. In particular, we study estimated or aggregated performance measures that

are efficient or (weakly) optimal for contracting purposes, meaning that there is no loss to con-

tracting on an estimate or aggregate relative to contracting on all of the underlying information

used to construct it.

The standing authority on optimal aggregation is Banker and Datar [1989]. In their seminal

paper, Banker and Datar use the parametric approach to show that optimal linear aggregates

are formed by weighting the underlying measures according to their relative precision and sensi-

tivity. That is, measures that have lower variance or are more responsive to managerial actions
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should receive relatively higher weight. Lambert [2001] observes that this result suggests that

accounting aggregates, which are equally-weighted sums or differences of underlying accounts,

are unlikely to be efficient for contracting. Income statement line items such as sales, cost of

goods sold and depreciation are likely to vary widely in their variance and in their sensitivi-

ties to CEO effort. Because income statement aggregates such as earnings before taxes (EBT)

or net income subtract expenses from revenues with no regard for differences in the sensitiv-

ity or precision of these components, Banker and Datar’s result implies that these accounting

aggregates are inefficient for contracting.

We revisit optimal aggregation using the generalized distribution approach. We show that

if the agent controls f(x), and if the principal’s objective (the thing she wishes to maximize)

is linear in x, then the optimal linear aggregate is given simply by the principal’s objective.

That is, the optimal weight on each variable is determined solely by how strongly the principal

values it. For example, if shareholders care equally about each revenue and expense item,

then an optimal compensation contract can be written on net income, which is an equally-

weighted aggregate of all revenues and expenses. Alternatively, if shareholders care more about

revenues than they do about line items further down the income statement, then the optimal

compensation contract will weight revenues more heavily. These results hold regardless of how

noisy the various revenue and expense items are or how sensitive they are to the manager’s

actions.

Our aggregation results may be of particular interest to empirical compensation research,

which often uses the sensitivity-precision result from Banker and Datar [1989] to form predic-

tions about executive compensation contracts. As noted by Bushman and Smith [2001], it is

difficult to empirically operationalize precision and (especially) sensitivity, and consequently,

the findings from this literature are mixed and sensitive to empirical specification. For exam-

ple, Core, Guay, and Verrecchia [2003] find that the relative weights on performance measures

are decreasing in relative variance when looking at CEO cash compensation but increasing in
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relative variance when considering CEO total compensation, suggesting that “existing findings

on cash pay cannot be interpreted as evidence supporting standard agency predictions.”

Before signals can be aggregated, they must be measured. The underlying firm fundamen-

tals that shareholders care about – such as true revenue, true income, or investment value – are

unobservable constructs that are estimated by the accounting system. To capture this reality, we

expand our model to a setting where the principal cannot observe the variables she intrinsically

values, x, but she can observe some other set of variables, y, such as the timing and amounts

of individual transactions. The agent influences both sets of variables by choosing f(x,y). We

show that the principal’s solution can be broken into three stages: measurement, aggregation,

and contracting. In the measurement stage, the principal uses information in y to construct an

unbiased estimate of each element in x; that is, the estimates are representationally faithful.

In the aggregation stage, as before, the principal aggregates the estimates according to their

corresponding weights in her objective. For example, if she cares equally about the revenues

from each product, these revenues are simply summed up into total revenues. Finally, in the

contracting stage, the principal conditions the agent’s compensation contract on one or more

of the aggregated estimates. This three-step decomposition rationalizes contracting on aggre-

gated accounting measures in practice: accounting systems estimate things that shareholders

care about, then sum these estimates into aggregate measures, and executive compensation

contracts are written on those aggregates.

Accounting standard setters are particularly concerned with the measurement stage, where

the observable signals y are used to produce unbiased estimates of underlying fundamentals x.

To explore the measurement process, we develop a highly tractable specification of our model in

which the agent’s equilibrium action is to mean-shift a normal distribution. (We do not impose

normality on the solution; it arises endogenously despite the agent’s ability to implement any

distribution imaginable.) Using this specification, we show that optimal measurement rules are

conservative, whereas the resulting measures themselves are unbiased. Because the manager can
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game the transaction characteristics y in an attempt to overstate underlying performance, the

optimal measurement rule understates y to arrive at an unbiased estimate of x. Consistent with

the findings of Gao [2013] and the intuition suggested by Watts [2003], conservative accounting

offsets managerial manipulation to produce unbiased performance measures.

One important measurement issue in accounting is how to measure investments with un-

certain returns. We present a simple application of our model which suggests that optimal

measurement depends on the availability of reliable evidence about future returns. In par-

ticular, if reliable evidence is difficult to produce, the optimal measurement rule for a given

investment depends on the likelihood that the investment will produce future returns. When

the correlation between an investment and future returns is low, the optimal measurement

rule reports the cash outlay and makes no attempt to estimate future returns, consistent with

the immediate expensing of highly uncertain investments such as R&D. When the correlation

between investment and future return is high, net income optimally includes some unrealized

income, consistent with the accrual of revenues after inventory has been delivered but before

cash is collected. When the correlation between investment and future return is moderate, the

optimal measurement rule deducts some, but not all, of the investment outlay from net in-

come. With the caveat that our highly stylized model considers only a single period, this result

resembles the capitalization and depreciation of PP&E investments, which arguably are more

strongly correlated with future returns than R&D but less so than sales of inventory on credit.

Finally, if reliable evidence about future returns is easy to produce, the optimal measurement

rule reports investments at fair value, regardless of the correlation between the investment and

its future return. For example, if the present value of a financial investment can be reliably

estimated, it is reported at fair value regardless of whether it is likely to generate future returns.

The paper proceeds as follows. Section 2 discusses related work. In section 3, we revisit

the question of optimal aggregation studied by Banker and Datar [1989]. Using the generalized

distribution approach, we show that the efficient linear aggregator weights the signals according
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to their weights in the principal’s objective, not according to their relative sensitivities and

precision. In section 4, we extend the model to a setting that seems more descriptive of the

accounting process: the principal cares about a set of unobservable firm fundamentals, x, and

can observe a large set of other signals (e.g. transaction characteristics), y. We show that

contracting on aggregated estimates of x is just as efficient as contracting on y, providing a

theoretic justification for contracting on aggregated accounting estimates like net income. In

section 5, we use a tractable specification of our model to investigate how the estimates of x

are formed. We provide stylized applications that rationalize conservative measurement rules

(section 5.1) as well as immediate expensing of R&D, capitalization of fixed assets, accrual of

credit sale revenue, and fair value accounting (section 5.2). Section 6 concludes and provides

suggestions for future empirical research. Proofs are in the appendix.

2 Related Work

Our paper is closest in topic to Banker and Datar [1989], who also study optimal aggregation in

a moral hazard setting. In particular, we are interested in the following question: Given a large

number of signals under an agent’s control, is there a way to linearly aggregate the signals such

that there is no loss to conditioning the contract on the aggregate relative to conditioning the

contract on all of the underlying signals? Some papers in accounting introduce frictions that

make aggregation strictly optimal. For example, Amershi and Cheng [1989] derive a demand for

aggregation by assuming it is costly to design and implement contracts based on disaggregated

data. Aggregation is optimal when the cost of contracting on many variables is outweighed by

the cost of the information loss that aggregation entails. More recently, Arya and Glover [2014]

suggest several settings in which the information loss from aggregation is actually beneficial.

Our paper and Banker and Datar [1989] contain only the standard moral hazard frictions – risk

aversion and unobservability of the agent’s actions – and study how weakly optimal aggregates
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are formed. Trivially, these aggregates would strictly dominate if we modeled some cost to

contracting on disaggregated information, such as a “cost of complexity” that increases in the

number of measures included in the contract.

Extending the setting studied by Banker and Datar [1989], we show that if the variables the

principal cares about are unobservable, the optimal contract can be broken into three stages –

measurement, aggregation and contracting. In the measurement stage, an efficient measurement

rule uses observable data (i.e. transactions or economic events) to produce a weakly optimal

estimate, such that there is no loss to contracting on the estimate relative to contracting on the

underlying data. Our decomposition of the solution into separate measurement and contracting

stages is related to Leuz [1999], who points out that contingencies embedded in the accounting

function could instead be included directly in contracts. We show only weak optimality of

separating the measurement and compensation functions, but as Leuz [1999] suggests, one

could introduce contracting costs to make the separation strictly optimal. For example, if the

principal contracts with multiple parties and there are costs to designing and implementing each

contract, there may be “returns to scale” from using the same measures in multiple contracts.

Much of the accounting literature models measurement as a biased, one-step mapping from

fundamentals to performance. By contrast, our model follows a two-step approach as proposed

by Gao [2013]. The agent chooses f(x,y) = f(x)f(y|x), and fundamentals x are distributed

according to the marginal distribution f(x). These fundamentals are linked to accounting

measures in two steps. Fundamentals x map to transaction characteristics y according to the

conditional distribution f(y|x), and transaction characteristics are mapped to performance

measures according to an unbiased estimation process, x̂ ≡ E[x|y], determined as part of the

principal’s solution.

The key difference between our paper and conventional agency theory papers like Banker

and Datar [1989] is in how the agent’s action is modeled. While the bulk of the literature uses

the parameterized distribution formulation, we use the generalized distribution formulation.
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These terms were coined by Hart and Holmström [1987] in their enlightening review of the

early agency literature, where they define and defend the generalized approach as follows (Hart

and Holmström [1987], pp.78-79).

Since the agent [in the parametric approach] in effect chooses among alternative
distributions, one is naturally led to take the distributions themselves as the actions,
dropping the reference to a. . . Of course, the economic interpretation of the agent’s
action and the incurred cost is obscured in this generalized distribution formulation,
but in return one gets a very streamlined model of particular use in understanding
the formal structure of the problem. This way of looking at the principal’s problem is
also very general. It covers situations where the agent may observe some information
about the cost of his actions, or the expected returns from his actions, before actually
deciding what to do; in other words, cases of hidden information. To see this,
simply note that whatever strategy the agent uses for choosing actions contingent on
information he observes, the strategy will in reduced form map into a distribution
choice. . . Thus, ex ante strategic choices are equivalent to distribution choices in
some [probability simplex] P .

The first paper to use the generalized approach was Holmström and Milgrom [1987] (though

ironically, that paper is better known as the birthplace of “LEN,” a set of modeling assump-

tions that falls squarely under the parametric approach). In addition to the hidden information

example described in the quote above, Holmström and Milgrom [1987] justify the generalized

approach with an example in which the agent acts continuously throughout the period, con-

ditioning his action on a privately observed continuous state variable; they argue (and Hébert

[2018] shows formally) that this setting can be represented in reduced form as the agent choosing

an unconditional distribution at the outset.

Since Holmström and Milgrom [1987], very few papers have used the generalized distribu-

tion formulation. An important recent exception is Hébert [2018], who studies optimal security

design. He pairs the generalized approach with a novel cost function in which the agent’s

disutility from implementing some distribution f depends on the divergence of f from a cost-

minimizing reference distribution g, and he provides a micro-foundation for this pairing. We

adopt Hébert’s intuitive cost function in this paper and in Bonham and Riggs-Cragun [2021],
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a close predecessor to this paper.

In Bonham and Riggs-Cragun [2021], we show that the generalized approach produces

optimal contracts that do not depend on likelihood ratios. The agent’s pay is conditioned

directly on the principal’s objective, rather than on what the realized outcome says about the

agent’s action. That intuition holds throughout the present paper as well; likelihood ratios do

not appear in our solutions. We extend Bonham and Riggs-Cragun [2021] to an accounting-

oriented setting in two ways. First, while in Bonham and Riggs-Cragun [2021] we assume

that the principal cares about a single variable, x, here we assume that the principal cares

about many variables, x. This allows us to study optimal aggregation, an important feature of

accounting. Second, in this paper we develop a specification of the model that produces closed-

form solutions, uniquely optimal linear contracts, and normal distributions. This tractability

allows us to investigate optimal measurement, another issue central to accounting.

In addition to the papers already mentioned, we know of a few others that use the general-

ized distribution approach. Hellwig [2007] uses it to extend Holmström and Milgrom [1987] to

include boundary solutions; Bertomeu [2008] uses it to study risk management; and Hemmer

[2017] uses a binary version of it to study relative performance evaluation. Finally, Bonham

[2020] uses the generalized approach to study how measurement and contracts shape produc-

tive incentives. In Bonham [2020], the agent has distributional control only over the principal’s

objective, x, which is assumed to be non-contractible. The relationship between the objective,

x, and the contractible signal, y, is beyond the agent’s control. By contrast, in Bonham and

Riggs-Cragun [2021] and in the present paper we assume that the agent can influence the joint

distribution over both the objective x and observable signals y, allowing us to take a two-step

approach to modeling measurement and to study issues like window dressing.
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3 Optimal Weighting of Performance Measures

A principal cares about a set of variables, x ≡ (x1 . . . xm)T . She might value some variables

differently than others; we say that the principal values x ∈ Rm according to her objective,

B(x), where B : Rm → R. The principal hires an agent to take unobservable actions that

stochastically improve x. To induce the agent to act in the principal’s interest, she designs a

contract, s(x), where s : Rm → R. Let U(s) be the (weakly) risk averse agent’s utility from

compensation, where U : R → R satisfies U ′(·) > 0 and U ′′(·) ≤ 0. Denote the agent’s utility

from outside options by Ū . Assume that the principal is risk neutral such that her utility is

equal to her net payoff, B(x)− s(x).

We study two questions in this section. First, under what conditions can the optimal

contract be conditioned on a linear aggregate of the performance measures x1, . . . , xm with

no loss to conditioning the contract on every individual measure? Second, in cases where the

contract can be conditioned on such an aggregate, what are the optimal linear weights on each

measure? We first present the classic result from Banker and Datar [1989] under the parametric

approach and then revisit the problem by invoking the generalized distribution approach.

3.1 The classic parameterized distribution approach

Under the classic approach taken by Banker and Datar [1989], the agent’s action serves as

a parameter in the joint distribution over x. Let the agent choose a ∈ A ⊆ R, and let a

parameterize the joint probability density function f(x; a). Exerting effort imposes a personal

cost on the agent of V (a), where the function V : R → R is increasing convex. Assume that

the agent’s utility is additively separable in his compensation and personal cost, so that we can

write his total utility as U(s)− V (a).

The principal’s goal is to design a contract-action pair, (s, a), that maximizes her net payoff

subject to two constraints. First, the agent’s expected utility under the proposed scheme must
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be at least as high as his utility from outside options; this individual rationality (IR) constraint

ensures that the agent will participate in the agency. Second, the proposed contract-action pair

must be incentive compatible (IC), meaning that the agent will choose the proposed a when

faced with the proposed s. The principal’s maximization program is given as follows.

max
s,a

∫
(B(x)− s(x))f(x; a)dx

s.t.
∫

(U(s(x))− V (a)) f(x; a)dx ≥ Ū

and
∫
U(s(x))fa(x; a)dx = V ′(a)

(1)

Let λ and µ be the multipliers on the IR and IC constraints, respectively. Standard methods

of pointwise optimization yield the following iconic characterization of the optimal sharing rule.

1
U ′(s(x))

= λ+ µ · fa(x;a)
f(x;a)

(2)

The optimal contract is a transformation of λ+ µ · fa(x;a)
f(x;a)

; we can see this more readily by

solving for s(x).

s(x) = U ′−1
(

1/
(
λ+ µ · fa(x;a)

f(x;a)

))
. (3)

Banker and Datar [1989] point out that this solution can be decomposed into two stages: (1)

aggregating the measures x1, . . . , xm into a single composite measure, π(x), and (2) writing a

compensation function that is conditioned on that measure.

Aggregator π(x) ≡ λ+ µ · fa(x;a)
f(x;a)

Contract s(π(x)) = U ′−1
(

1
π(x)

) (4)

Notice that when the likelihood ratio fa(x;a)
f(x;a)

is linear, the optimal aggregator π(x) is linear
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as well.2 Banker and Datar [1989] define a large class of parametric distributions for which

likelihood ratios are linear, including the entire exponential family, providing a rationale for

contracting on certain linear aggregates.

Within a subclass of distributions for which some linear aggregator is optimal, Banker and

Datar [1989] characterize the relative linear weights on each measure. Let π(x) =
∑

j πjxj be

an optimal linear aggregator. Banker and Datar [1989] show that the weight on measure xi

relative to the weight on measure xj depends on the relative signal-to-noise ratios of the two

measures.

πi
πj

= ∂E(xi|a)/∂a
Var(xi)

/
∂E(xj |a)/∂a

Var(xj)
(5)

Banker and Datar [1989] call ∂E(xi|a)/∂a the sensitivity of xi to the agent’s effort and 1/V ar(xi)

the precision of xi. All else equal, the higher a measure’s sensitivity or precision, the larger its

relative weight in the optimal aggregator, π(x).

The sensitivity-precision result from Banker and Datar [1989] suggests that two perfor-

mance measures will receive equal weight only if their signal-to-noise ratios are identical. As

noted by Lambert [2001], there is something unsatisfying about this from an accounting perspec-

tive. Executive compensation contracts are often conditioned on accounting aggregates, which

are equally-weighted sums and differences of many underlying accounts, and it is unlikely that

all of those accounts have identical signal-to-noise ratios. It is therefore unclear from the result

why executive compensation contracts are conditioned on aggregated accounting totals rather

than on their (readily available and contractible) disaggregated components.

2Note that linearity in the aggregator, π, does not imply linearity in the contract, s.
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3.2 The generalized distribution approach

We now revisit optimal linear aggregation by invoking the generalized distribution approach;

that is, we assume that the agent can implement f(x) nonparametrically. This assumption

greatly expands the agent’s opportunity set relative to the classic parametric approach, giving

him as much control over the distribution as the principal has over the contract. Notice that in

the classic approach the agent chooses a scalar, a ∈ R, whereas the principal chooses s(x) for

every outcome x. The generalized approach puts the principal and agent on equal footing: the

agent chooses the probability of every x and the principal chooses the pay level for every x.

There are many ways to think about how an agent might “choose a distribution” nonpara-

metrically in practice. In section 2, we referred to two examples provided by Holmström and

Milgrom [1987]. Our preferred interpretation is to think of the agent as a CEO who faces an

uncountably rich set of opportunities for action. However, it is perhaps more straightforward

to simply notice that modeling the agent as implementing f(x; a) by her choice of a is just a

constrained version of modeling the agent as choosing f(x) directly. In the classic model, the

agent’s choice of a is equivalent to choosing a particular parametric distribution f(x; a) from

the set {f(x; a)|a ∈ A}. The generalized approach assumes that the agent can choose any

distribution; that is, the agent selects f(x) from ∆(x) ≡ {f(x)|
∫
f(x)dx = 1, f(x) ≥ 0 ∀x},

where ∆(x) denotes the space of all probability distributions over x. If one is willing to accept

that an agent in the classic approach is capable of implementing a particular f(x; a), it should

not require a radical shift in thinking to accept our assumption that the agent can implement

a particular f(x). Of course, some distributions are more difficult to implement than others,

which brings us to the agent’s cost function.

Assume that the agent implements distribution f at personal cost V (f), a function we

redefine here as V : ∆(x) → R. Let g(x) ∈ ∆(x) be the agent’s preferred or cost-minimizing

distribution, the one that he would implement if offered zero incentives. Following Hébert [2018],
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we model the agent’s personal cost from implementing f by the Kullback-Leibler divergence from

g to f , denoted D(f(x)||g(x)).

V (f) = D(f(x)||g(x)) ≡
∫
f(x) ln

(
f(x)
g(x)

)
dx, (6)

where
∫
dx indicates integration over x1, . . . , xm. Divergence (or relative entropy) measures the

dissimilarity between two distributions and has many applications in information theory. For

our purposes, it captures the personal cost incurred by the agent when he takes the requisite

actions to implement some distribution f when he prefers distribution g. Intuitively, the larger

the divergence from g to f , the larger the personal cost borne by the agent.

The KL-divergence cost function has several appealing properties which we discuss in

Bonham and Riggs-Cragun [2021] and repeat here. First, the cost function is non-negative:

D(f ||g) = 0 for f = g and is positive otherwise. Intuitively, the agent suffers zero cost when

he implements his preferred distribution. Second, KL divergence is strictly convex in the pair

(f, g) if f 6= g and is weakly convex if f = g (Cover and Thomas, Theorem 2.7.2). For a given

g, it is increasingly costly for the agent to increase the probability of a particular x, and it is

maximally costly to implement a degenerate distribution that guarantees the realization of a

particular x. This convexity implies that the agent’s control over the distribution will never

amount to full control over the realization, because controlling the realization is too costly. In

more applied terms, the agent can reduce, but not eliminate, the role of exogenous influences

on x. Third, the KL divergence marginal cost approaches infinity as f(x) approaches zero for

any x; this will simplify our analysis by guaranteeing interior solutions.

It is useful to think of g as the distribution over x when the agent exerts minimum effort.

For example, g might be the distribution in place when the agent is first hired, perhaps due to

actions taken by prior agents. Alternatively, g might be the distribution that would result if the

agent spent all his time watching Netflix instead of working. The distribution g is undesirable
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from the principal’s perspective but is maximally desirable from the agent’s perspective, absent

incentives. In the classic parametric model, the principal and agent have a conflict over the

agent’s effort level, a; the agent prefers minimum effort (e.g. a = 0), while the principal

wants the agent to work as much as possible. Under the generalized approach, the principal

and agent have a conflict of interest over what distribution should be implemented, f . The

principal wants an f with the highest possible E[B(x)], and because she is risk neutral, does

not care intrinsically about the distribution’s shape. The agent prefers to set f = g, and must

be provided with incentives to do anything else.

When offered contract s, the agent chooses f to maximize his expected utility from com-

pensation less his personal cost.

max
f

∫
U(s(x))f(x)dx−

∫
f(x) ln

(
f(x)
g(x)

)
dx

s.t. 1 =
∫
f(x)dx

f(x) ≥ 0 for all x

(7)

The constraints ensure that the chosen f is a p.d.f. Let ν denote the Lagrange multiplier on

the constraint 1 =
∫
f(x)dx. We ignore the final set of constraints because, as we will establish

shortly, f(x) ≥ 0 does not bind for any x. Pointwise optimization of (7) yields the following

incentive compatible action.

f(x) = g(x)eU(s(x))−ν−1, (8)

where ν = ln
(∫

g(x)eU(s(x))−1dx
)

is obtained by substituting (8) into the constraint
∫
f(x)dx =

1. Because both g and the exponential function are non-negative everywhere, the unconstrained

solution satisfies the constraint f(x) ≥ 0 for all x. It follows that when faced with a particular

incentive scheme s, the agent chooses f such that (8) is maintained for all x. Taking into
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account that the agent will respond in this way, the principal solves the following program.

max
s,f

∫
(B(x)− s(x))f(x)dx

s.t. ν +
∫

(U(s(x))− ν)f(x)dx− V (f) ≥ Ū

U(s(x)) = ln
(
f(x)
g(x)

)
+ 1 + ν for all x

1 =
∫
f(x)dx

(9)

The principal seeks to maximize her expected net payoff subject to three constraints. The

first is the IR constraint, where we have added and subtracted ν on the left-hand side for

convenience. The second set of constraints are the IC constraints. These are obtained from

the agent’s first-order condition (equation 8); the first-order approach is valid here because the

agent’s program (equation 7) maximizes a concave function with linear constraints. There is an

IC constraint for every x because the agent chooses the probability of every possible realization

of x, and thus equation (8) must be satisfied for all x for the proposed (s, f) to be incentive

compatible. The final constraint ensures that the agent chooses a distribution that integrates

to one; we refer to this as the “p.d.f. constraint.”3 Throughout the paper, we let λ be the

Lagrange multiplier on the IR constraint, µ(x) be the IC multiplier for a given x, and η be the

multiplier on the p.d.f. constraint.

Proposition 1 If the principal’s objective is B(x), the agent controls f(x), and x is available

for contracting, the optimal contract is characterized as follows.

1
U ′(s(x))

= λ− η +B(x)− s(x). (10)

Notice that x enters (10) only through the contract, s(x), and the objective, B(x). In stark

3Equivalently, we could write this constraint as ν = ln
(∫
g(x)eU(s(x))−1dx

)
to ensure that ν is specified such

that f(x) integrates to one in the agent’s program. Notice that substituting the IC contract U(s(x)) =

ln
(

f(x)
g(x)

)
+ ν + 1 into ν = ln

(∫
g(x)eU(s(x))−1dx

)
reduces to 1 =

∫
f(x)dx.
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contrast to the classic parametric approach, likelihood ratios play no role in the solution, and

any variation in the contract comes only through variation in the objective B(x) (see Bonham

and Riggs-Cragun [2021] for a detailed analysis and discussion of why this is the case). This

has important implications for optimal aggregation.

Rearranging (10) gives

s(x) = Ũ−1 (B(x)) , (11)

where Ũ(s) ≡ s + 1
U ′(s)
− λ + η. As in Banker and Datar [1989], we can separate the solution

into two stages, where information in x is first aggregated into a composite measure and then

a compensation contract is written on that aggregate.

Aggregator π(x) ≡ B(x)

Contract s(π(x)) = Ũ−1 (π(x))
(12)

Thus, the principal’s objective, B(x), is an optimal aggregator for contracting. Banker and

Datar [1989] show that under the classic approach, optimal aggregators can be linear if likelihood

ratios are linear; here, the optimal aggregator is linear if the principal’s objective is linear. More

notably, the optimal weights in the linear aggregator are determined entirely by B(x), as shown

in the following corollary.

Corollary 1 Assume the principal values x linearly so that her objective is B(x) = bTx =
m∑
i=1

bixi, where b ≡ (b1 . . . bm)T . Then an optimal linear aggregator and contract solving the

principal’s program are as follows.

Aggregator π(x) ≡
m∑
i=1

πixi =
m∑
i=1

bixi

Contract s(π(x)) = Ũ−1 (π(x)) ,

(13)
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where Ũ(s) ≡ s + 1
U ′(s)

− λ + η characterizes the contract’s functional form. In particular, if

B(x) is a linear aggregate, then the contract is conditioned on that same linear aggregate, with

the optimal weight on xi given by bi.

The corollary shows that under the generalized distribution approach, the optimal linear

aggregator simply sets πi = bi for each xi. That is, performance measures are weighted according

to their weights in the principal’s objective. Sensitivity and precision (however defined in

this setting) play no role in the aggregation process; the only thing that matters for optimal

weighting is the vector b. The optimal linear aggregator π(x) weights two measures xi and xj

by their proportion in the principal’s objective.

πi
πj

= bi
bj

(14)

Corollary 1 helps to rationalize the use of equally-weighted aggregates in executive com-

pensation contracts. As an example, assume that x = (xr, xe)
T , where xr is total revenues and

xe is total expenses; and assume that the principal’s objective is B(xr, xe) = xr − xe. Assume

that revenues are noisier than expenses because, for example, demand fluctuates but salaries

are fixed. The classic sensitivity-precision result from Banker and Datar [1989] would predict

a higher weight on expenses than revenues all else equal, and therefore it would be inefficient

to contract on earnings, z ≡ xr − xe, an equally-weighted difference between revenues and

expenses. Under our approach, by contrast, the optimal aggregator follows from (13) as

π(xr, xe) = B(xr, xe) = xr − xe = z. (15)

That is, contracting on net income is a perfectly efficient, despite the noisiness of revenues

relative to expenses.

An obvious shortcoming of this example is that accounting measures such as GAAP rev-
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enues and expenses are not what firm owners value per se, but instead are estimates of under-

lying economic phenomena that firm owners do care about. If firm owners care about “true

revenues” and “true expenses” (which are unobservable), can GAAP net income still be an

efficient aggregator? We address this question in the next section.

4 Contracting on Aggregated Estimates

Until this point in our analysis, we have assumed that the components of the principal’s objec-

tive, x1, . . . , xm, are all observable and contractible. But this assumption is inconsistent with

the way accountants typically think. If the things firm owners value were contractible, there

would be no need for measurement. It is common practice in accounting theory to assume that

firm owners care about firm fundamentals, and that these underlying economic phenomena are

measured or estimated by the accounting process. To better capture the accounting process,

in this section we extend our model to a setting where the things firm owners care about are

unobservable.

Assume as before that the principal cares about a set of m random variables given by

x ≡ (x1, . . . , xm)T , and assume that she values these measures linearly so that her objective is

B(x) =
∑m

i=1 bixi. Assume that x is unobservable, but that the principal has at her disposal

a set of n contractible random variables given by y ≡ (y1, . . . , yn)T . Let the agent choose

f(x,y) ∈ ∆(x,y), where ∆(x,y) is the space of all joint probability distributions over x and

y. We might think of x as including constructs such as the change in true firm value during

the contracting period or the value of assets in place, while y might represent observable

detailed data such as individual sales transactions, inventory delivery times, amounts spent on

R&D projects, and the historical purchase prices of property, plant and equipment. We define

the cost of implementing f(x,y) by its divergence from an exogenous reference distribution,
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g(x,y) ∈ ∆(x,y):

V (f) = D(f(x,y)||g(x,y)) ≡
∫
f(x,y) ln

(
f(x,y)
g(x,y)

)
d(x,y), (16)

where
∫
d(x,y) indicates integration over x1, . . . , xm, y1, . . . , yn. As before, g(x,y) minimizes

V (f) and is therefore the distribution preferred by the agent absent incentives. Given a contract

s(y), the agent chooses f(x,y) to maximize his expected utility from compensation minus his

personal cost.

max
f

∫
U(s(y))f(x,y)d(x,y)−

∫
ln
(
f(x,y)
g(x,y)

)
f(x,y)d(x,y)

s.t. 1 =
∫
f(x,y)d(x,y)

(17)

Letting ν be the Lagrange multiplier on the constraint, pointwise optimization yields the fol-

lowing characterization of the incentive compatible action.

f(x,y) = g(x,y)eU(s(y))−1−ν (18)

The non-contractability of x causes the agent to have more control in choosing a distribution

than the principal has in designing the contract. The agent chooses the probability of every

(x,y) while the principal chooses a payment s(y) for every outcome y. The principal is faced

with the following optimization problem.

max
s,f

∫
(B(x)− s(y))f(x,y)d(x,y)

s.t. ν +
∫

(U(s(y))− ν) f(x,y)d(x,y)−
∫

ln
(
f(x,y)
g(x,y)

)
f(x,y)d(x,y) ≥ Ū

U(s(y)) = ln
(
f(x,y)
g(x,y)

)
+ 1 + ν for all (x,y)

1 =
∫
f(x,y)d(x,y)

(19)

Due to the principal’s control disadvantage, there are some distributions that she cannot
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implement with any contract.4 Pointwise optimization of program (19) over s is done pointwise

at every y (rather than at every (x,y)), which leaves integrals over x in the solution. In

particular, the optimal contract depends on conditional expectations over x given y. This is

shown in the following proposition, which presents the solution to program (19).

Proposition 2 If the agent chooses f(x,y) nonparametrically, where the principal’s objective

is B(x) =
m∑
i=1

bixi but she can only contract on y, the optimal contract is characterized as

follows.

1
U ′(s(y))

= λ− η +
∫
B(x)f(x|y)dx− s(y)

⇐⇒ s(y) = Ũ−1 (Ef [B(x)|y]) ,
(20)

where Ef [B(x)|y] ≡
∫
B(x)f(x|y)dx is the expected value of B(x) given y under the equilibrium

distribution f , and Ũ(s) ≡ s+ 1
U ′(s)
− λ+ η.

The proposition shows that the optimal contract is a transformation of Ef [B(x)|y], the

expected value of the principal’s objective given all available information in y. Because we

have assumed B(x) to be linear, Ef [B(x)|y] is a linear sum of conditional expectations:

Ef [B(x)|y] = Ef
[
m∑
i=1

bixi

∣∣∣∣y] =
m∑
i=1

bi Ef [xi|y], (21)

where Ef [xi|y] ≡
∫
xif(xj|y)dxi is the expected value of xi given all available information

in y. The following corollary shows that we can separate the principal’s solution into three

components: estimation, aggregation, and compensation. We let x̂i denote the principal’s

estimate of xi and x̂ denote her estimate of the vector x.

Corollary 2 If the agent chooses the distribution f(x,y) where the principal’s objective is

B(x) =
∑m

i=1 bixi and y is the set of contractible performance measures, then an optimal

4Specifically, the principal can only implement contracts for which f(x|y) = g(x|y) for all (x,y) (see Lemma 3
of Bonham and Riggs-Cragun [2021]).

21



Bonham & Riggs-Cragun Aggregated Estimates September 23, 2021

estimate, aggregator, and compensation contract are as follows.

Estimate x̂ = Ef [x|y]

Aggregator π(x̂) = B(x̂) ≡ bT x̂

Contract s(π(x̂)) = Ũ−1 (π(x̂)) ,

(22)

where Ef [x|y] is the expected value of x given y under the equilibrium distribution f ; π(x̂) is the

optimal aggregated estimate; and Ũ(s) ≡ 1
U ′(s)

+s−λ+η characterizes the agent’s compensation

function.

The solution is executed in three stages. First, the principal estimates each xj as x̂j =

Ef [xj|y] ≡
∫
xjf(xj|y)dxj. Notice that x̂j is an unbiased estimate, or in the words of accounting

standard setters, it is a “faithful representation of the real-world economic phenomena that it

purports to represent” (FASB [2006]). Second, the principal aggregates the estimates according

to the weights in her objective to produce the aggregated estimate π(x̂) = bT x̂ ≡
m∑
i=1

bix̂i.

Finally, the principal conditions the agent’s compensation on this aggregated estimate.

To illustrate, let us return to the example posited in section 3, where the principal cares

about true revenues, xr, and true expenses, xe, such that her objective is B(xr, xe) = xr−xe ≡ z,

where z denotes true earnings. Now suppose that these true values are unobservable, but that

the principal does observe y, which contains information such as sales transactions, customer

characteristics, inventory data, and operational expenditures. One option is that the principal

could condition the contract directly on this underlying data (indeed, compensation committees

have enormous databases of detailed information at their fingertips). Corollary 2, provides a

different option. The principal first uses information in y to construct unbiased estimates of
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revenues and expenses, x̂r and x̂e:

Estimate of xr x̂r = Ef [xr|y]

Estimate of xe x̂e = Ef [xe|y].
(23)

Next, the principal aggregates these estimates according to the weights in her objective. Because

we have assumed thatB(xr, xe) is an equally weighted difference between revenues and expenses,

the principal can efficiently condition the agent’s compensation on net income, ẑ ≡ x̂r − x̂e.

Aggregator π(x̂r, x̂e) = B(x̂r, x̂e) = x̂r − x̂e ≡ ẑ

Contract s(π(x̂r, x̂e)) = s(ẑ) = Ũ−1 (ẑ) .
(24)

Then to the extent that GAAP revenues and expenses are representationally faithful, con-

tracting solely on net income can be just as efficient as writing an extremely complex contract

conditioned on all of the underlying information used to construct net income.

Our results can also provide a rationale for contracting on both revenue and income metrics,

a commonly observed practice in executive compensation (De Angelis and Grinstein [2015],

Bloomfield, Gipper, Kepler, and Tsui [2021]). Extending the example above, suppose that the

principal cares more about revenues than she does about expenses, such that her objective

is given by B(xr, xe) = brxr − xe, with br > 1. In this case, the optimal contract can be

conditioned on a weighted aggregate of estimated revenues and expenses,

π(x̂r, x̂e) = brx̂r − x̂e, (25)

or equivalently, on revenues and net income:

π(x̂r, ẑ) = (br − 1)x̂r + ẑ, (26)
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where br − 1 > 0. Thus, contracts that put positive incentives in revenues and earnings are

in effect weighting revenues more heavily than expenses. This equivalence is also pointed out

by Bloomfield et al. [2021], who interpret the practice as a form of “cost shielding.” They

document that CEO bonus plans include an average of 2.27 income statement measures, where

0.5 are revenue metrics, 1.01 are net income, and the remainder are earnings measures other

than net income (e.g. EBITDA, EBIT, and EBT). Based on our results, these statistics suggest

that shareholders tend to care more about revenues than about expenses. By contrast, applying

the findings from Banker and Datar [1989] to these statistics would suggest that revenues tend

to be less noisy than expenses or more sensitive to CEO actions.

5 Optimal Measurement

Corollary 2 shows that the optimal contract is conditioned on the unbiased estimates x̂ =

Ef [x|y]. We refer to accounting measurement as the process by which the principal forms

the estimates x̂. Under the general model in the prior section, the measurement process is

ambiguous; without knowing the form of f , we can’t say anything about how the principal

forms the expectation Ef [x|y]. In this section, we employ a simple specification of our model

in which the optimal f(x,y) arising in equilibrium is a multivariate normal distribution. This

gives us the tractability to open the measurement black box.

As in section 4, assume that the principal’s objective is B(x) = bTx, that y is contractible

but x is not, and that the agent controls f(x,y) at a personal cost given by (16). Assume

that the agent’s cost-minimizing distribution, g(x,y), is a multivariate normal distribution

with mean 0 and variance-covariance matrix Σg ≡
[

Σxx Σxy

Σyx Σyy

]
. Finally, assume that the agent’s

reservation utility is Ū = 0, and assume that he is risk neutral so that U(s) = s. We are

giving up risk aversion for tractability here, and we feel this is a worthy sacrifice given that

this section is focused on measurement rather than the shape of the compensation function.
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The following proposition provides the optimal contract and shows that the agent’s equilibrium

action mean-shifts the distribution g.

Proposition 3 Assume that the principal’s objective is B(x) = bTx, but the only measure

available for contracting is y. Let the risk-neutral agent choose f(x,y), and assume that g(x,y)

is a centered multivariate normal distribution with covariance matrix Σg ≡
[

Σxx Σxy

Σyx Σyy

]
. Then an

optimal estimate, aggregator, contract, and action are characterized as follows.

Estimate x̂ = ΣxyΣ−1
yyy

Aggregator π(x̂) = B(x̂) = bT x̂

Contract s(π(x̂)) = π(x̂)− η

Action f(x,y) = g(x,y)eb
TΣxyΣ−1

yyy−η,

(27)

where η = 1
2
bTΣxyΣ−1

yyΣyxb. Under the equilibrium distribution, (x,y) ∼ N ([ µxµy ] ,Σg), where

µx = ΣxyΣ−1
yyΣyxb and µy = Σyxb.

Because we are interested in measurement, the solution (27) is presented using a three-stage

decomposition, as in Corollary 2, where the principal first constructs the estimates x̂1 . . . x̂m,

aggregates them according to the weights in her objective, and then conditions the agent’s

compensation on the aggregated estimate. The three-step solution is equivalent to contracting

directly on y, where s(y) = bTΣxyΣ−1
yyy.

Our specification in this section changes the general solution (22) in three ways. First,

measurement is no longer ambiguous; the principal’s estimate is given by the linear regression

x̂ = Ef [x|y] = ΣxyΣ−1
yyy.5 Second, the optimal contract is linear in the estimates x̂. This

linearity comes from assuming risk neutrality. While risk neutrality results in linear contracts

5The measurement process will always have x̂ = ΣxyΣ−1
yyy when g is a multivariate normal, even if the agent

is not risk neutral. This is because f(x|y) = g(x|y) always holds when x is not contractible (see Bonham
and Riggs-Cragun [2021], Lemma 3), so f(x|y) is a normal distribution even if f(x,y) is not. Thus, Ef [x|y]
is a linear regression of x on y for any risk preference, and risk neutrality is needed only for normality in
f(x,y) = f(x|y)f(y).
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being weakly optimal under the classic approach, here it results in linear contracts that are

uniquely optimal. Third, we now have a closed-form solution for the equilibrium f . The

proposition shows that if g is a multivariate normal with mean 0 and variance-covariance Σg,

then the equilibrium f is also a multivariate normal with different means but the same variance-

covariance matrix as g.

It is worth emphasizing that we have not restricted f to be normal; as in our general

model, the agent has the ability to implement any distribution imaginable. The reason a

normal distribution arises in equilibrium has to do with the KL-divergence cost function, in

combination with the assumption of risk neutrality. The risk-neutral principal does not care

about the shape of the distribution and wants to increase its mean as cheaply as possible. It

can be shown that for a given mean shift from g to f where g is a normal distribution with

variance-covariance matrix Σg, the f that minimizes KL divergence is a normal distribution with

variance-covariance matrix Σg. Combining this with a risk-neutral agent means that making f

a normal distribution is the cheapest way to implement a given mean shift.

The normality of f conveniently allows for comparative statics on how Σg affects production.

As a simple example, consider the case with m = n = 1; that is, the principal cares about a

single variable and only one transaction characteristic is contractible. Specifically, assume

B(x) = x and y = y, where the agent chooses f(x, y). Assume g(x, y) is a centered bivariate

normal distribution with correlation coefficient ρ > 0, so that Σg =
[

1 ρ
ρ 1

]
. Then the optimal

estimate, contract and distribution are given as follows.

Estimate x̂ = ρy

Contract s(x̂) = x̂− 1
2
ρ2

Action f(x, y) ∼ N
([

ρ2
ρ

]
,Σg

) (28)

In equilibrium, µx = ρ2 and µy = ρ. Notice that ρ2 < ρ for 0 < ρ < 1, so in equilibrium the

agent mean-shifts y more than x. The parameter ρ indexes the complementarity between x and
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y in the agent’s preferred distribution g. When ρ is small, it is easy for the agent to improve y

without improving x. When ρ is high, the agent finds it costly to move y without also moving

x. When ρ = 1, x and y are perfect complements in the agent’s preferred distribution, and he

prefers to move x and y in exactly the same way; in this case, the principal does just as well

contracting on y as she would do if she could contract on x directly.

We will explore them = n = 1 case further in section 5.1, which is the first of two accounting

measurement applications that we provide. Application 5.1 studies how optimal measurement

is affected by the agent’s ability to manage earnings, and application 5.2 studies optimal mea-

surement of uncertain investments. These applications are highly stylized and should be taken

as suggestive examples; we leave it to future work to develop more rigorous analyses of these

issues. The applications do suggest that many common accounting practices are efficient for

contracting when managers have extensive control over both fundamental performance and

accounting reports.

5.1 Window dressing and conservatism

In many settings, managers can engage in window dressing actions – non-value-added activities

that improve a performance measure but do not contribute to the principal’s objective. Our

model is well-suited for studying this issue. Let the principal’s objective be true performance,

denoted x, and assume that x is not contractible. Let y be contractible evidence about the

realization of x, such as a transaction characteristic as in Gao [2013]. The agent controls

f(x, y), and thus can potentially engage in window dressing by manipulating the transaction

characteristic to improve the distribution of y. The principal must design a measurement rule

x̂(y) and contract s(x̂) to optimize her net payoff in the face of the agent’s ability to game y.

Assume that the agent’s preferred distribution, g(x, y), is a centered bivariate normal with

unit variance and correlation coefficient ρ. If ρ is close to one, the agent finds it very costly

to increase y without also increasing x; that is, window dressing behavior is difficult and the
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transaction characteristic provides very reliable evidence about x. By contrast, if ρ is close to

zero, the agent finds it very easy to increase y without changing x; that is, window dressing

behavior is very easy and the transaction characteristic provides little reliable evidence.

Define window dressing as the extent to which the expected transaction characteristic

exceeds expected true performance, Ef [y]− Ef [x]. The solution is given by equation (28) and

shows that the amount of window dressing that takes place in equilibrium is µx − µy = ρ− ρ2.

This function is concave with a global maximum at ρ = 1
2

and is equal to zero at ρ = 0 or

ρ = 1. Thus, for any interior level of susceptibility to window dressing (i.e. ρ ∈ (0, 1)), there

will be some amount of window dressing activity in equilibrium.

The principal is not fooled by the agent’s window dressing activity, and she takes it into

account when forming her estimate. By (28), the optimal measurement rule sets x̂ = ρy, which

implies that Ef [x̂] = ρEf [y] = ρ2 = Ef [x]. That is, the optimal measurement rule discounts

y by factor ρ ∈ [0, 1] in order to reduce Ef [x̂] from Ef [y] to Ef [x]. As a result, the optimal

estimate x̂ understates the manipulable evidence y but is an unbiased measure of the true value

of x. Analogous to Gao [2013] and as suggested by Watts [2003], this conservative measurement

rule offsets managerial biases to create an unbiased performance measure.

5.2 Accounting for investments

Let the principal’s objective be B(x) = b2x2 − x1, where x1 represents current outlays in

an investment and x2 represents future benefits from the investment. Let y1 and y2 represent

evidence about x1 and x2, respectively. The agent chooses the joint distribution f(x1, x2, y1, y2).

Let the agent’s cost-minimizing distribution, g(x1, x2, y1, y2), be a centered multivariate normal
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with variance-covariance matrix

Σg =

Σxx Σxy

Σyx Σyy

 =



1 ρx1x2 ρx1y1 ρx1y2

ρx1x2 1 ρx2y1 ρx2y2

ρx1y1 ρx2y1 1 ρy1y2

ρx1y2 ρx2y2 ρy1y2 1


. (29)

We assume that current investment outlays are perfectly measurable by setting ρx1y1 = 1.

This assumption implies that ρx1z = ρy1z for any measure z, and consequently, we have ρx2y1 =

ρx1x2 ≡ ρx and ρx1y2 = ρy1y2 ≡ ρy. Let ρ2 ≡ ρx2y2 . Then the variance-covariance matrix above

can be rewritten as

Σg =

Σxx Σxy

Σyx Σyy

 =



1 ρx 1 ρy

ρx 1 ρx ρ2

1 ρx 1 ρy

ρy ρ2 ρy 1


. (30)

From Proposition 3, the solution is as follows.

Estimate of x1: x̂1 = y1

Estimate of x2: x̂2 =
(
ρx−ρyρ2

1−ρ2y

)
y1 +

(
ρ2−ρxρy

1−ρ2y

)
y2

Aggregator : π(x̂) = B(x̂) = b2x̂2 − x̂1

Contract : s(π(x̂)) = π(x̂)− η

Action: f(x1, x2, y1, y2) ∼ N



µx1 = ρxb2−1

µx2 =
b2(ρ

2
x+ρ

2
2−2ρxρyρ2)−ρx(1−ρ

2
y)

1−ρ2y
µy1 = ρxb2−1

µy2 = ρ2b2−ρy

 ,Σg



(31)

To gain intuition for this solution, we will do comparative statics under two cases, one in
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which reliable evidence about future benefit x2 is very difficult to produce (ρ2 = 0) and one

where it is very easy to produce (ρ2 = 1).

Case 1: Future returns difficult to measure

We first consider the case in which it is very difficult to produce reliable evidence about future

returns on investment. We capture this setting by assuming that, absent incentives, y2 is pure

white noise: ρx1y2 = ρx2y2 = ρy1y2 = 0. With this assumption, the variance-covariance matrix

under the agent’s cost-minimizing distribution g is given as follows, where ρx ≡ ρx1x2 = ρx2y1 .

Σg =

Σxx Σxy

Σyx Σyy

 =



1 ρx 1 0

ρx 1 ρx 0

1 ρx 1 0

0 0 0 1


. (32)

Under these assumptions, the solution (31) reduces to the following.

Estimate of x1: x̂1 = y1

Estimate of x2: x̂2 = ρxy1 = ρxx̂1

Aggregator : π(x̂) = b2x̂2 − x̂1 = (b2ρx − 1)x̂1

Contract : s(π(x̂)) = π(x̂)− η

Action: f(x1, x2, y1, y2) ∼ N

([ µx1 = b2ρx−1

µx2 = ρx(b2ρx−1)

µy1 = b2ρx−1
µy2 = 0

]
,Σg

)
(33)

Both x̂1 and x̂2 are unbiased measures of x1 and x2 given the equilibrium action: Ef [x̂1] =

Ef [y1] = b2ρx − 1 = µx1 and Ef [x̂2] = ρx Ef [y1] = µx2 . Interpret the aggregation function

π(x̂) = (b2ρx − 1)x̂1 as reported net income, and note that this is increasing in ρx for all

positive investments.

If ρx = 0 so that investments are maximally uninformative about future returns, then net
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income is given by π(x̂) = −x̂1. That is, estimated investments are all immediately expensed

and no future benefits are estimated. This is loosely analogous to the treatment of R&D, where

investments have a very low correlation with future returns and are immediately expensed.

Given that net income is constructed in this way when ρx = 0, the agent chooses a distribution

in which µx2 = 0 and µx1 = −1; that is, the agent ignores future returns and liquidates some

existing projects (i.e., cuts R&D) to make a short-term profit.

As ρx increases from zero, a smaller proportion of x̂1 is optimally deducted from net income.

When ρx = 1
b2

, net income is equal to π(x̂) = (b2ρx − 1)x̂1 = 0. That is, estimated investments

x̂1 are never reflected on the income statement; i.e., they are capitalized. We can interpret

ρx ∈
(

0, 1
b2

)
as investments that are partly capitalized and partly expensed. This is loosely

analogous to investments in fixed assets, which indeed are capitalized rather than expensed,

with some amount deducted from net income as depreciation. For fixed asset investments with

a relatively high likelihood of return, i.e. ρx = 1
b2

, the agent chooses a distribution in which

µx1 = µx2 = 0; that is, the agent maintains the status quo investment strategy and refrains

from liquidating PP&E.

Finally, as ρx increases beyond 1
b2

, net income optimally includes some unrealized gains or

revenues; in the limit where ρx = 1, net income is given by π(x̂) = (b2 − 1)x̂1. For instance,

the sacrifice of inventory in a credit sale tends to be highly correlated with the future receipt

of cash from customers. In this analogy, x1 is total cost of goods sold, b2 is the sales price,

and b2ρx is the net realizable value of a representative sale. If bad debts are immaterial when

the agent does not exert effort, then in equilibrium the agent chooses a distribution in which

µx1 = µx2 = b2− 1 > 0; that is, the agent exerts effort to sell inventory to customers with good

credit.
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Case 2: Future returns easy to measure

Now we relax the assumption that y2 is pure noise and consider how the solution (31) changes

under the opposite assumption; that is, as evidence about future payoffs becomes perfectly

reliable. Notice that as ρ2 approaches 1, ρx approaches ρy.
6 Then setting ρ2 = 1 and letting

ρ ≡ ρx = ρy, the variance-covariance matrix is as follows.

Σg =

Σxx Σxy

Σyx Σyy

 =



1 ρ 1 ρ

ρ 1 ρ 1

1 ρ 1 ρ

ρ 1 ρ 1


. (34)

This reduces solution (31) to the following.

Estimate of x1: x̂1 = y1

Estimate of x2: x̂2 = y2

Aggregator : π(x̂) = b2x̂2 − x̂1

Contract : s(π(x̂)) = π(x̂)− η

Action: f(x1, x2, y1, y2) ∼ N

([ µx1 = ρb2−1

µx2 = b2−ρ
µy1 = ρb2−1

µy2 = b2−ρ

]
,Σg

)
(35)

Because the agent in this case has no incentive to window dress y1 or y2, the principal

takes both signals as given when estimating x1 and x2; unlike in section 5.1, conservatism is not

needed to construct unbiased estimates. Recall that the principal’s objective is B(x) = b2x2−x1,

and suppose that b2 represents the principal’s discount factor on the future cash flow x2. The

solution above gives that reported income is π(x̂) = b2x̂2 − x̂1 = b2y2 − y1. Then the change in

6For the variance-covariance matrix of the three random variables x2, y1 and y2 to be positive semi-definite,

ρ2ρy −
√

(1− ρ22)(1− ρ2y) ≤ ρx ≤ ρ2ρy +
√

(1− ρ22)(1− ρ2y). Thus, as ρ2 converges to 1, the lower bound and

upper bound on ρx both converge to ρy.
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firm wealth from the investment is reported at fair value, expected future cash flows less the

amount expended in the current period.

Taken together, the results in this section suggest that optimal measurement rules are

driven by the reliability of available evidence. When evidence about future returns is completely

unreliable (Case 1), optimal measurement rules are driven by ρx, the correlation between current

investments and future returns; that is, whether income from a particular investment should

be accrued or deferred depends on the likelihood that the investment will pay off in the future.

When evidence about future returns becomes available, optimal measurement rules take that

evidence into account (see x̂2 in equation 31), and as that evidence becomes perfectly reliable,

the optimal measurement rule is to report fair value, regardless of the correlation between

investment and future returns.

6 Conclusion

The classic sensitivity-precision result from Banker and Datar [1989] shows that performance

measures are optimally aggregated according to their relative sensitivities and precision, im-

plying that equally-weighted accounting aggregates are suboptimal for contracting. We revisit

optimal aggregation in a model where the agent has intricate control over the distribution of

performance measures, and we show that performance measures should be weighted by their

weights in the principal’s objective. This result indicates a sound reason to revisit empirical

studies of executive compensation that rely on the classic sensitivity-precision result. To the

extent that executives are better described as influencing a distribution’s form rather than its

parameters, the generalized approach may have more predictive power than the classic para-

metric approach. Our results also suggest that empiricists can use executive compensation

contracts to make inferences about shareholder or board priorities; specifically, the relative

weight on a measure in a CEO’s compensation contract should reflect how much shareholders
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care about that measure relative to other measures in the contract.

Our results depart from Banker and Datar [1989] because we use the generalized distribution

formulation of the agency problem rather than the conventional parameterized distribution

formulation. Future theoretical work could provide a reconciliation between the two, perhaps

by showing the latter as a special case of the former, or the former as a limiting case of the

latter. A reconciliation of this sort would facilitate a sharper comparison of findings across the

two approaches, and may generate insights that deepen our understanding of agency problems.
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Appendix: Proofs

Proof of Proposition 1. First, write program (9) in Lagrangian form as follows.

L =
∫

(B(x)− s(x))f(x)dx

+λ
[
ν +

∫
(U(s(x))− ν)f(x)dx− V (f)− Ū

]
+
∫
µ(x̃)

[
U(s(x̃))− ln

(
f(x̃)
g(x̃)

)
− 1− ν

]
dx̃

+η
[
1−

∫
f(x)dx

] (36)

Taking the first-order condition with respect to s(x) and rearranging gives

1
U ′(s(x))

= λ+ µ(x) 1
f(x)

. (37)

Now taking the first-order condition with respect to f(x) gives

0 = B(x)− s(x) + λ
[
U(s(x))− ln

(
f(x)
g(x)

)
− 1− ν

]
− µ(x) 1

f(x)
− η (38)

Notice that the IC constraint implies that the term in brackets is equal to zero. Then

rearranging (38) gives µ(x) = f(x) (B(x)− s(x)− η). Substituting this into (37) produces the

solution presented in the proposition.
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Proof of Proposition 2. Rearranging (18) gives U(s(y)) = ln
(
f(x,y)
g(x,y)

)
+ 1 + ν, allowing us to

write the principal’s program as follows.

max
s,f

∫
(B(x)− s(y))f(x,y)d(x,y)

s.t. ν +
∫

(U(s(y))− ν) f(x,y)d(x,y)−
∫

ln
(
f(x,y)
g(x,y)

)
f(x,y)d(x,y) ≥ Ū

U(s(y)) = ln
(
f(x,y)
g(x,y)

)
+ 1 + ν for all (x,y)

1 =
∫
f(x,y)d(x,y)

(39)

Let λ, µ(x,y), and η denote the Lagrange multipliers on the constraints. Pointwise opti-

mization with respect to s at y yields the following expression for s(y):

∫
f(x,y)dx = λU ′(s(y))

∫
f(x,y)dx + U ′(s(y))

∫
µ(x,y)dx (40)

Noting that
∫
f(x,y)dx = f(y) and rearranging gives the the following characterization of the

optimal contract.

1
U ′(s(y))

= λ+
(∫

µ(x,y)dx
)

1
f(y)

. (41)

Pointwise optimization of (39) with respect to f at (x,y) yields the following closed form

expression for µ(x,y).

µ(x,y) = f(x,y) (B(x)− s(y)− η) (42)

Substituting µ(x,y) into (41) gives:

1
U ′(s(y))

= λ+
(∫

(B(x)− s(y)− η) f(x,y)dx
)

1
f(y)

⇐⇒ 1
U ′(s(y))

= λ− η +
∫
B(x)f(x,y)

f(y)
dx− s(y)

⇐⇒ 1
U ′(s(y))

= λ− η +
∫
B(x)f(x|y)dx− s(y).

(43)

Now we show that f(x|y) = g(x|y). First, observe that

f(y) =
∫
f(x,y)dx =

∫
g(x,y)eU(s(y))−1−νdx = g(y)eU(s(y))−1−ν , (44)

where the second equality follows from equation (18) and the first and third equalities are by
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definition of a marginal distribution. Equation (44) implies that

f(x|y) = f(x,y)
f(y)

= g(x,y)eU(s(y))−1−ν

g(y)eU(s(y))−1−ν = g(x,y)
g(y)

= g(x|y). (45)

Then the integral in the last line of (43) can be rewritten as

∫
B(x)f(x|y)dx =

∫
B(x)g(x|y)dx ≡ Eg[B(x)|y]. (46)
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Proof of Proposition 3. Given a contract s(y), the risk-neutral agent chooses f(x,y) to maxi-

mize his expected utility minus his personal cost.

max
f

∫
s(y)f(x,y)d(x,y)−

∫
f(x,y) ln(f(x,y)

g(x,y)
)d(x,y)

s.t. 1 =
∫
f(x,y)d(x,y)

(47)

With ν as the multiplier on the constraint, pointwise optimization yields:

f(x,y) = g(x,y)es(y)−ν−1 (48)

The principal’s program is as follows, where we add and subtract ν on the left-hand side of the

IR constraint.

max
s,f,ν

∫
(B(x)− s(y))f(x,y)d(x,y)

s.t. ν +
∫

(s(y)− ν)f(x,y)d(x,y)−
∫
f(x,y) ln(f(x,y)

g(x,y)
)d(x,y) ≥ Ū

f(x,y) = g(x,y)es(y)−ν−1 for all (x,y)

1 =
∫
f(x,y)d(x,y)

(49)

Substitute the IC constraints into the objective function and into the other constraints; this

reduces the IR constraint to ν + 1 ≥ Ū . Setting Ū = 0 and binding the IR constraint yields

ν+1 = 0. Substituting this into the objective and the other constraints, the principal’s program

can be rewritten as follows.

max
s

∫
(B(x)− s(y))es(y)g(x,y)d(x,y)

s.t. 1 =
∫
es(y)g(x,y)d(x,y)

(50)

Pointwise optimization (at y) characterizes the optimal contract as follows.

es(y)
∫
B(x)g(x,y)dx = (s(y) + 1)es(y)

∫
g(x,y)dx + ηes(y)

∫
g(x,y)dx

⇐⇒ Eg[B(x)|y] = s(y) + 1 + η
(51)

Then we can substitute s(y) = Eg[B(x)|y]− η− 1 into equation (48) to obtain the equilibrium

distribution,

f(x,y) = g(x,y)eEg [B(x)|y]−η−1. (52)

By definition of a conditional multivariate normal distribution, Eg[B(x)|y] = bTΣxyΣ−1
yyy.

38



Bonham & Riggs-Cragun Appendix: Proofs September 23, 2021

Then we can rewrite the optimal contract and action as follows.

s(y) = bTΣxyΣ−1
yyy − η − 1

f(x,y) = g(x,y)eb
TΣxyΣ−1

yyy−η−1
(53)

Now letting x̂ = ΣxyΣ−1
yyy, the solution above is equivalent to the following.

x̂ = ΣxyΣ−1
yyy

π(x̂) = bT x̂

s(π(x̂)) = B(x̂)− η − 1

f(x,y) = g(x,y)eb
TΣxyΣ−1

yyy−η−1

(54)

Let z = [xT ,yT ]T and µ = [µTx , µ
T
y ]T . Conjecture that f(x,y) ∼ N (µ,Σ), where Σ = Σg ≡[

Σxx Σxy

Σyx Σyy

]
. Define Σ−1 ≡

[
Σ̃xx Σ̃xy

Σ̃yx Σ̃yy

]
. Then:

f(x,y) = (2π)−
n+m

2 det(Σ)−
1
2 exp(−1

2
(z− µ)TΣ−1(z− µ))

= g(x,y) exp(zTΣ−1µ− 1
2
µTΣ−1µ).

(55)

It follows from (54) and (55) that the conjecture is true if there exists some µ satisfying the

following conditions:

zTΣ−1µ− 1
2
µTΣ−1µ = yTΣ−1

yyΣyxb− η − 1

⇐⇒ xT (Σ̃xxµx + Σ̃xyµy) + yT (Σ̃yxµx + Σ̃yyµy)− 1
2
µTΣ−1µ = yTΣ−1

yyΣyxb− η − 1

Since the coefficients on the variables and the constants must be equal on both sides, the

expression gives the following three equalities.

Σ̃xxµx + Σ̃xyµy = 0,

Σ̃yxµx + Σ̃yyµy = Σ−1
yyΣyxb,

η + 1 = 1
2
µTΣ−1µ.

(56)

The first two expressions imply that Σ−1µ =
[

0
Σ−1

yyΣyxb

]
. Solving for µ:

µ =

[
Σxx Σxy

Σyx Σyy

][
0

Σ−1
yyΣyxb

]
=

[
ΣxyΣ−1

yyΣyxb

Σyxb

]
(57)

39



Bonham & Riggs-Cragun Appendix: Proofs September 23, 2021

Since Σxx,Σyy are both invertible, we can solve for η + 1 as follows.

η + 1 = 1
2
µTΣ−1µ

= 1
2
µT

[
(Σxx − ΣxyΣ−1

yyΣyx)−1 0

0 (Σyy − ΣyxΣ−1
xxΣxy)−1

][
I −ΣxyΣ−1

yy

−ΣyxΣ−1
xx I

]
µ

= 1
2
µT

[
0

Σ−1
yyΣyxb

]
= 1

2
bTΣxyΣ−1

yyΣyxb
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