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1 Introduction

Endowments take on substantial risk, including investments in equities, alternatives, and
illiquid assets (e.g., timber).1 Indeed, the so-called “endowment model” or “Yale model”
of investment (Swensen (2009)) has become standardized, creating a blueprint for sys-
tematic endowment-like investing throughout the world (Leibowitz et al. (2010)).

There is a large existing literature on an endowment’s optimal investment strategy,
including hedging against economic downturns and random costs.2 The conventional
wisdom—tracing back to Litvack et al. (1974), Tobin (1974), Black (1976) and Swensen
(2009)—is that an endowment can afford to take on substantial investment risk since it has
a long time horizon, as much of its expenses occur in the future. Consistently, university
endowments, for example, routinely emphasize their long-term investing horizon, with
their main funds commonly labeled “long-term investment pools” or similar names.

At the same time, Black (1976) strongly argues that the standard argument of a long
horizon is not well grounded because it takes an endowment in isolation of all of its stake-
holders.3 Neither his paper nor the subsequent literature, though, explores this point with
sufficient micro-based foundations. The current optimal endowment literature does not
incorporate explicit donor utility maximization, instead modeling the objective function
of the endowment’s sponsor (e.g., university) or some proxy for a range of stakeholders.

Commencing with the seminal 1958 theorem by Modigliani and Miller (MM), a litera-
ture in corporate finance began analyzing a firm’s optimal capital structure by including
its key stakeholders—the firm’s shareholders—into the model. Barring financial mar-
ket frictions (e.g., asymmetric information), the MM theorem shows that a firm’s capital
structure is irrelevant when shareholders are considered. Shareholders neutralize the
firm’s capital structure decision within their own private portfolios.

Similarly, an endowment does not operate independently of its donors. Donors give
money to the endowment’s sponsor (e.g., university) in order to receive some form of
consumption value (“altruism” or “warm glow”). So, it might seem that the endowment
investment problem could be relabeled as a traditional corporate finance problem, pro-
ducing a MM type of theorem where the endowment’s investment policy is irrelevant.

1See, for example, Lerner et al. (2008); Dimmock (2012); Cejnek et al. (2014a); and Ang et al. (2018).
2See, for example, Litvack et al. (1974); Tobin (1974); Black (1976); Merton (1992, 1993); Dybvig (1999);

Fisman and Hubbard (2005); Swensen (2009); Constantinides (1993); Gilbert and Hrdlicka (2012); Cejnek
et al. (2014a); Cejnek et al. (2014b); and, Brown and Tiu (2015).

3His argument is best understood using the more modern language of missing markets. Whereas the
government can potentially take on more risk to complete missing markets between generations, an en-
dowment lacks the necessary taxation authority. In particular, an endowment can’t pre-commit future
generations to donate during hard economic times.
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The endowment problem, though, is different than the standard firm problem in one
key way: the endowment’s money comes from donors making voluntary gifts to a “public
good” that produces non-rivalrous consumption across donors rather than a private return.
In 1954, Paul Samuelson published his seminal (and second-most cited) article showing
that the private sector will under-provide a public good relative to the “socially optimal”
level, resulting in market failure.4 The subsequent literature interpreted Samuelson’s set-
ting as “altruistic” agents donating to a public good, resulting in a “free-riding” (under-
provision) in Nash equilibrium (e.g., Steinberg 1987; Andreoni 1988).

An endowment’s sponsor raises money from donors, in large part, to support a com-
mon mission among its donors. This public good might include a passion for a uni-
versity’s sports teams, the shared joy of knowing that the university offers subsidies to
low-income matriculates, the shared prestige of a university’s contribution to basic re-
search, or even a university’s prestige as measured by the endowment size itself (James,
1990; Hansmann, 1990; Conti-Brown, 2011; Brown et al., 2014; Goetzmann and Oster, 2015;
Chambers et al., 2015; Rosen and Sappington, 2016). Unlike a private good (e.g., a foot-
ball ticket), each dollar gifted to these public goods produces non-rivalrous consumption
simultaneously enjoyed by all donors. Free-riding in giving emerges because each donor
receives utility value from the entire value of the public good even if she contributes lit-
tle. Equivalently, each donor does not internalize the utility value to other donors from
her own contribution. In still other words, each donor’s contribution produces a positive
non-pecuniary “externality” to other donors, resulting in a Prisoner’s Dilemma.

If each donor internalized this externality, she would make a larger (“socially opti-
mal”) level of gift where all donors are better off, thereby achieving a Pareto improve-
ment. The social optimum could be achieved using a Coasian contracting mechanism if
there were few transaction costs to centralizing donor activity. It could also be achieved by
force by a social planner imposing a head tax on each donor. This outcome would be “first
best” because it would directly achieve the socially optimal level of gifts without distortion.
However, first-best mechanisms are not plausible in our context. An endowment sponsor
might, for example, engage in a capital campaign to inform donors of a desired target.5

But, as with many public goods problems, transactions costs6 or a lack of force requires
the endowment’s sponsor to rely on an indirect, “second-best,” decentralized mechanism

4Standard examples of public goods include the shared benefit of non-congested roads and the military,
the shared joy of knowing that low-income people are fed, and basic scientific research that produces non-
pecuniary externalities.

5In fact, the target itself is endogenous and would likely be much larger if there were no free-riding
problem. Put differently, the fact that capital campaigns often reach their initial target is not evidence
against free-riding.

6In fact, even identifying “donors“ would be subject free-riding at the “extensive” margin.
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where some distortion, therefore, is required. This paper shows that the endowment’s
risk policy is such a mechanism, and a very powerful one.

Until now, a concern of free-riding has not been incorporated into the optimal en-
dowment investment literature, as that literature has not considered explicit donor utility
maximization.7 However, maximizing an assumed endowment objective function with-
out considering the donor problem raises an important question: How do you know that
donors won’t walk away? Donor utility maximization would be required with perfect
competition across endowments for donor funds. Donor utility maximization is even
required with imperfect competition but complete information, where donors oversee the
endowment by, for example, serving on investment committees, as is common practice
(Brown et al., 2011). To be sure, deviations from complete information are entirely plau-
sible. But, even if the endowment environment has asymmetric information, donor maxi-
mization is needed to correctly identify principal-agent conflicts. For example, we show
that the appearance of endowment excessive risk taking—commonly interpreted as an
agency problem—is likely efficient and required by complete information. More generally,
any claim of an agency issue must be made relative to the donors as a distinct principal.8

This paper, therefore, presents a micro-based model with donor utility maximization
for determining an endowment’s optimal capital structure. Our model is analogous to the
approach of Modigliani and Miller’s while incorporating Samuelson’s insight since free-
riding is part of the donor problem, which, as we show, makes the endowment investment
policy very non-neutral. In particular, we first show that endowment risk taking reduces
free-riding by generating equilibrium “precautionary donations” of prudent donors. (All
reasonable preferences exhibit prudence.) This reduction in free-riding, though, comes at
a cost of the endowment taking on risk (a second-best distortion) that it would not have
taken if it were not for donor free-riding. We then derive an optimality condition—in which
the absolute coefficient of prudence is sufficiently larger than the absolute coefficient of
risk aversion—where it is, indeed, optimal for an endowment to take on this risk, that is,
where the value of reducing free-riding exceeds the cost of additional risk. As the size of
the donor base grows, this condition quickly converges to standard DARA preferences.
Because our model maximizes a donor’s expected utility, this additional endowment risk
taking is Pareto improving and required by competition among endowments for dona-
tions, or, more generally, required by complete information.

7Some papers cited above incorporate an exogenous donation stream independent of the endowment’s
actions. The endowment does not maximize donor utility in these papers.

8If the endowment’s problem is taken in isolation of the donor problem, there is no agency issue since
the endowment is both principal and agent. Any observable investment pattern of investment by the en-
dowment must simply reflect its objective function, which, by construction, must then be efficient.
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In fact, we show that it is optimal for a large endowment to take on substantial risk
even if donors are very risk averse toward variations in the endowment’s value and even
if an endowment uses high-free investments that, on net, pay no more than cash on
average.9 These results, therefore, contrasts sharply with “asset-liability matching” (or
”liability-driven investing”) that is appropriate with pension plans (Brown and Wilcox,
2009; Novy-Marx and Rauh, 2011), but where free-riding is not a concern.10

How does the presence of free-riding so radically change the optimal risk allocation?
While we present a formal model in Section 2, it is worth considering a simplified example
now to build some intuition. An endowment invest λ of its assets into the risky asset,
with the remainder invested into a risk-free security paying a guaranteed zero return.
The risky asset pays a zero expected return but with non-zero variance.11 There are N
identical donors, each endowed with one unit of wealth; hence, total wealth is also N.
Each donor has separable log-log preferences: log utility over the post-return value of
private assets that is added to log utility over the post-return value of the endowment.
Given λ, donors play a public-goods Nash game that produces a symmetric equilibrium
gift decision rule.12 By backward induction, given this gift decision rule conditional on λ,
the endowment then picks the second-best λ to maximize donor expected utility.

Suppose that the endowment initially fails to take risk, λ = 0. As we show in Section
5, with a two-point risk distribution, the Nash equilibrium produces an aggregate level of
giving of N

N+1 , which is less than the first-best socially optimal total level of giving of N
2 ,

with two or more donors N ≥ 2. However, if donors are prudent, the endowment can do
better by taking on risk, |λ| > 0,13 if the optimality condition, noted above, is satisfied.
With log-log preferences, the optimality condition only requires having more than three
donors, N > 3. Then, the endowment sets |λ| > 0, and the decentralized, second-best
Nash equilibrium generates N

4 in total giving. Notice that with N > 3:

9Of course, we are not advocating the use of expensive investment products. Rather, our point is simply
that substantial risk-taking, even with expensive investment products, is more efficient than no risk taking.

10Pension claims are paid by firms or governments as part of compensation. Neither party seeks volun-
tary donations to pay claims. Rather, these costs are financed from firm revenues or by taxation authority.

11Hence, the risky asset is second-order stochastically dominated by the risk-free asset. We make this
assumption to focus on the mechanism at play, which, as we show, still produces positive risk taking.
Obviously, if the risk premium were positive, the endowment is more likely to invest in risk.

12A public-goods game must be played since donors receive utility from the total endowment size, which
includes gifts from other donors. If, instead, each donor only received utility from her own gift, this “warm
glow” (Andreoni (1998)) is a private good without any shared benefit to other donors. Section 2 then shows
that an equivalent MM theorem can emerge where the endowment investment policy λ has no impact
on donor expected utility. In other words, the endowment investment policy is irrelevant (neutral) with
only private goods. This neutrality also applies to previous papers where the endowment hedges random
donation streams. Hence, without loss in generality, we can limit our consideration to donors who, as
described above, derive at least some utility over the total value of the endowment.

13The model allows for shorting and so λ 6= 0 represents risk taking.
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N
N + 1

(i.e., equilibrium total giving with λ = 0)

<
N
4

(i.e., second-best equilibrium giving with |λ| > 0)

<
N
2

(i.e., first-best [“social optimum”] giving)

Consider the first inequality. It shows that endowment risk taking increases total equi-
librium gifts, thereby reducing free-riding. Since donor expected utility is being maxi-
mized, this change is also Pareto improving and required by complete information. Of
course, at first glance, this result seems absurd since the risky asset produces no com-
mensurate risk premium. Put differently, this endowment is simply introducing mean-
preserving risk. How could “junk variance” be optimal if donors are risk averse to changes
in the endowment’s value? The answer is that with positive prudence, even a mean-
preserving endowment risk effectively pre-commits each donor to give a larger, precau-
tionary donation in the decentralized Nash equilibrium. Under the optimality condition,
the marginal benefit of reducing free-riding exceeds the marginal risk cost of additional
risk, measured at the point where the endowment initially takes no risk (λ = 0).

However, endowment risk taking is a second-best mechanism and produces a level
of giving less than first-best, as shown in the second inequality above. It is not efficient
for the endowment to fully eliminate free-riding due to the distorting cost of risk-taking
that does not exist in first best. (In first best, donors directly eliminate free-riding without
changing the endowment’s risk.) But, if the endowment tried setting λ to generate gifts
more than the second-best value, donors would walk (or, would fire the management).

In sum, donors can’t commit to a costless centralized, first-best Coasian mechanism.
Endowment risk taking, pre-commits prudent donors to increase precautionary dona-
tions in the decentralized economy, but it comes with a (risk) distortion, making it second-
best. We formally prove that the second-best utility can never be as high as the first-best.

The inequality above also shows that a large enough endowment (N >> 3) optimally
invests almost exclusively in risk, even in this extreme setting with a zero risk premium.
Notice that the first-best level of giving, N

2 , grows unbounded in N. But, the level of giving
with no endowment risk taking (λ = 0), N

N+1 , converges to unity. Hence, the size of the
free-riding problem—the difference between these two quantities—grows unbounded in
N. A small endowment (i.e., small N) optimally takes no (if N ≤ 3) to little risk (N > 3,
but not big). But, a growing endowment must take on increasing risk to mitigate an
exploding free-riding problem.
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Now suppose donors are extremely averse to changes in the endowment’s value. To be
concrete, assume donors have log-CRRA(20) preferences: log utility over private assets
that is added to Constant Relative Risk Aversion (CRRA) over the endowment’s value
but with an implausibly large risk aversion of 20.14 The size of the free-riding problem,
though, still grows in the number of donors N. Hence, for any finite level of risk aversion
over the endowment’s value, there exists a value of N where the optimality condition
holds. The main difference relative to the log-log case is that the optimality condition
now requires a larger value of N, now equal to about two dozen in the log-CRRA(20) case
(Section 5). So, with just two dozen or more donors, an endowment optimally takes risk
even if (i) it only invests in very expensive investment products paying a zero expected
return and (ii) donors are very risk averse to changes in the endowment’s value.

To be sure, these results might seem a bit far-fetched. However, recall that our model
is only making two main assumptions. First, we assume donor maximization, consistent
with competition, or, more generally, required by complete information, just like the MM
theorem with respect to firm shareholders. Second, our model recognizes that our stake-
holders are making investments into a public good that, in part, produces non-rivalrous
consumption for other donors. Given standard assumptions that generate a unique Nash
equilibrium, the optimal capital structure produced by our model is, therefore, the unique
solution compatible with complete information and altruistic donors.

Of course, it is well known that the MM theorem fails in the face of real-world fric-
tions, including asymmetric information. Yet, the MM theorem continues to be taught in
introductory corporate finance and is one of the most cited papers in finance precisely
because it tells us where to look for theoretically valid determinants of a firm’s optimal
capital structure. Similarly, we recognize that endowments face agency problems (Ehren-
berg and Epifantseva, 2001; Core et al., 2006; Dimmock, 2012; Gilbert and Hrdlicka, 2013;
Hoxby, 2015). Brown et al. (2014), for example, shows that the length of a university
president’s tenure is predictive of risk taking. Still, any agency issues are appropriately
measured against the equilibrium with complete information.

Our results, therefore, reverse the conventional thinking about the relationship be-
tween endowment risk taking and agency. A low level of risk taking by a large endow-
ment indicates a principal-agent conflict since this investment fails to maximize the ex-
pected utility of rational, fully-informed donors. A salaried endowment investment man-
ager, for example, might take on a low level of risk for the same reason as a salaried CEO

14For example, proposed solutions to the classic “equity premium puzzle” generally try to reach a con-
stant relative risk aversion of four or below. At a risk aversion of 20, it is doubtful that anyone who absorb
the stresses of running a non-profit entity.
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of a for-profit company: because his or her job represents a personalized, non-diversified
risk. We are not, of course, ascribing intent, as a salaried endowment manager might
unknowingly exploit the asymmetric information or bounded rationality of its donors.
Executive stock options were created to increase CEO risk taking in for-profit compa-
nies (Hall and Murphy, 2002; Dittmann et al., 2017). Conversely, the backlash in recent
years against university endowment managers receiving large performance-based pay-
outs (e.g., Fleischer 2015) could actually increase this type of principal-agent problem.

The main focus of this paper is normative in nature, that is, on deriving optimal endow-
ment risk taking rather than attempting to explain actual practice. Still, it is interesting
that the model relationship between endowment size and optimal risk taking is largely
consistent with the cross-sectional “size effect” found in the data, where risk taking in-
creases in endowment size (NCSE (2017), Figure 3.2). However, contrary to conventional
wisdom, we show that a large endowment should take on substantial risk even without
the presence of fixed costs (e.g., dedicated asset managers) and even if it does not have
access to unique asset classes that produce superior expected returns. It is also optimal
for smaller endowments to take on less risk even in the presence of modern outsourced
“endowment style” turnkey investment solutions that are supposed to absorb these fixed
costs and provide access to superior returns.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3
derives the socially optimal (“first best”) endowment investment policy, consistent with a
hypothetical social planner who directly resolves the free-rider problem by dictating the
gift of each donor. Without the social planner construct, Section 4 derives the condition
under which endowments optimally take on more risk in Nash equilibrium. It shows that
this solution must be “second best” and can never deliver “first best” expected utility.
Section 5 provides examples while Section 6 concludes. Appendix A contains proofs.

2 Three-Stage Game

For exposition purposes, we present a very simple model. An endowment is funded by
N identical donors, each endowed with wealth w = 1. Both the endowment and donors
have access to the same risky and risk-free assets. The risk-free asset pays a guaranteed
zero real return, r = 0. The risky asset with random net return x̃ also has a zero expected
value, E [x̃] = 0. The risk-free asset, therefore, second-order stochastically dominates the
risky asset, and so risk-averse donors should never take on risk. We can interpret the risky
asset as an expensive investment that does not over-perform cash on average. Nonethe-
less, we show that the endowment, which competitively maximizes ex-ante donor ex-
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pected utility, should optimally hold the risky asset under a new condition we derive.15

The timing of the model is as follows:

Stage 1: The endowment announces its optimal investment policy in the risky asset
λ that maximizes each donor’s identical expected utility.

Stage 2: Each donor i picks her own optimal gift gi. She simultaneously picks her
own investment in risky assets αi for the remainder of wealth not gifted,
w− gi. A Nash (non-cooperative) game is played with other donors.

Stage 3: The risky return x̃ is realized.

The endowment is forward looking and so the game is solved backward, starting with
the decision-making at Stage 2.

2.1 Stage 2: Donors

Each donor i donates gift gi to the endowment and also chooses the amount αi to invest
in risky assets from the remainder of her assets, w − gi. Donor i makes these choices,
conditional on the value of λ announced by the endowment at Stage 1 as well as the
donation decisions of other donors, to maximize donor i’s expected utility:16

EUi
(

gi, αi|λ,−→g−i
)
= E [u (1 + αi x̃− gi)] + E

[
v

(
gi +

N

∑
j=1,j 6=i

gj + λx̃

)]
. (1)

Here, −→g−i = (g1, ..., gi−1, gi+1..., g N) is the vector of donations made by donors other than
donor i. (Consistently, we will use the notation ~g = (g1, ..., gN) to be the vector of all do-
nations, including donor i.) The increasing and concave functions u (·) and v (·) provide
felicity over personal consumption and gifts contained in the endowment, respectively.

The expression in function v (·) assumes that each donor only cares about the sum of
gifts, consistent with pure altruism, and so the donor does not distinctively weigh her
own gift. The endowment, therefore, provides a “public good” to donors in the tradition
of Samuelson (1954), which can lead to free-riding.17 A large subsequent literature has

15Numerical results are discussed below for the case E [x̃] > r = 0, consistent with a positive equity
premium. The key results remain qualitatively unchanged but become quantitatively stronger.

16In particular, donor i invests αi into the risky asset and the remainder, (w− gi − αi), into the risk-free
asset, for a gross return at Stage 3 of αi(1 + x̃) + (w − gi − αi)(1 + r), which reduces to 1 + αi x̃ − gi with
w = 1 and r = 0, as shown in the first term on the right-hand side of equation (1). Similarly, the endowment
invests λ of total gifts, G = ∑N

j=1 gj, into the risky asset and the remainder into the risk-free asset, to receive
λ(1 + x̃) + (G− λ)(1 + r) = G + λx̃, which is shown in the second term.

17One of the upshots of Samuelson (1954) is that government can use tax policy to reduce free-riding.
A charitable deduction, in particular, could be incorporated in our model by reducing donor i′s private
consumption by less than gi in equation (1). However, it is generally inefficient for the government to
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investigated actual giving motives to charities in general18 and to education institutions,
specifically.19 In aggregate, the evidence suggests some form of “impure altruism,” taking
the form of a combination of private benefit (e.g., “warm glow” or, for example, increasing
the chances of a child’s admission to a college) and a “pure” benefit (altruism). For our
purposes, however, we just need some altruism to motivate the free-riding problem.

2.2 Remark: A Neutrality Result with No Altruism

Indeed, suppose that, instead of altruism, each donor provides a gift that is perfectly sub-
stitutable with her own personal consumption. Then, the donor’s problem (1) becomes

EUi
(

gi, αi; λ,−→g−i
)
= E [u (1 + αi x̃− gi + (gi − λ)(1 + r) + λ(1 + x̃))]

= E [u (1 + (α + λ)x̃)] ,
(2)

where, recall, r = 0. We drop the i subscript on α in the second equality since donors are
still ex-ante identical and there is no public good. The free-riding problem, of course, van-
ishes. But, notice that each donor now only cares about the total risk, (α + λ), rather than
its decomposition.20As a result, the actual endowment risk policy λ, that competitively
maximizes donor ex-ante utility, is now irrelevant since each donor simply neutralizes
any choice of λ with an offsetting choice of α, similar to the MM theorem. For the remain-
der of this paper, we consider the case of altruism giving shown in equation (1).

2.3 Stage 1: The Endowment

The endowment fund picks its investment policy λ to maximize the sum of donor utilities,

N

∑
i=1

E [u (1 + α∗i (λ)x̃− g∗i (λ))] + N · E
[

v

(
N

∑
i=1

g∗i (λ) + λx̃

)]
,

where g∗i (λ) and α∗i (λ) are the equilibrium policy functions that solve the Stage 2 prob-

fully resolve the free-riding problem, especially for large N, since the lost revenue must be replaced using
distorting taxes. Incorporating the charitable deduction would not change our key qualitative results. Pro-
vided that the charitable deduction does not fully resolve the free-riding problem, endowments would still
compete by increasing their investment in risk.

18See, for example, Becker (1976), Andreoni (1998), Fama and Jensen (1985), Rose-Ackerman (1996), and
Fisman and Hubbard (2005).

19See, for example, Baade and Sundberg (1996), Clotfelter (2003), Ehrenberg and Smith (2003), Meer and
Rosen (2009), Butcher et al. (2013), and Brown et al. (2015).

20This result easily generalizes to the case E [x̃] > r = 0 and other potential complexities.
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lem.21 However, since donors are ex-ante identical, maximizing their sum of utilities is
identical to choosing λ to maximize the ex-ante utility of a single donor, consistent with a
competitive equilibrium, where endowments compete for donations:

Ω (λ) = E [u (1 + α∗(λ)x̃− g∗(λ))] + E [v (Ng∗(λ) + λx̃)] . (3)

3 Optimal Endowment Investment: Social Optimum

The endowment problem that maximizes equation (3) looks similar to the “social plan-
ner” problem considered by Samuelson (1954) and the large subsequent literature on the
private provision of a public good. However, there is a subtle but important difference.

While picking λ, the social planner also picks the gifts vector ~g when maximizing
equation (3). The social planner, therefore, directly solves the gifts free-riding problem,
producing the first-best expected donor utility. Let hatted variables corresponding to the
social planner problem, and variables with ∗ superscripts denote optimal values.

Theorem 1. In the social optimum, λ̂∗ = 0, α̂i
∗ = 0 ∀i, with equals gifts ĝi

∗ = ĝ∗ that solves

u′ (1− ĝ∗) = Nv′ (Nĝ∗) . (4)

Intuitively, since the risky asset is dominated, the endowment and individual donors
don’t take on any risk. Since the social planner directly controls individual donor gifts,
he does not need to inefficiently distort risk taking by setting λ̂∗ to any value but zero.
The concavity of u (·) and v (·) implies that this solution is also unique.

4 Optimal Endowment Investment: Nash Equilibrium

In contrast, an endowment investment manager cannot pick gifts. Instead, he can only
control the endowment’s investment policy λ. As we prove below, risk taking by the
endowment (λ 6= 0) increases gifts of prudent donors, decreases free-riding of prudent
donors. But this reduction in free-riding comes at a cost of more risk taking. We derive
a new condition where the benefit of reducing free-riding exceeds the cost of risk taking.

21Section 4 defines the non-cooperative (Nash) equilibrium in more detail, but it is standard. For the
cooperative (social) case considered below, the hypothetical social planner directly picks the gift “policy
functions.”
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Relative to the social planner, who directly solves free-riding by dictating gifts and not
distorting investments, picking λ is, therefore, a second-best mechanism.

We now solve for the non-cooperative solution (Nash) for the game outlined in Section
2 and then compare it against the social optimum solution without free-riding.

4.1 Stage 2: Nash Equilibrium Gifts

Starting first with the donor game in Stage 2, the definition of a Nash equilibrium is
standard. Each donor i picks the tuple (gi, αi) that maximizes her problem (1), given the
gifts made by other donors, −→g−i.22 A Nash equilibrium is the vector of gifts ~g∗ and the
vector of personal risk taking ~α∗ = (α1, ..., αN) that maximizes the donor problem (1), ∀i.

Theorem 2. The Nash equilibrium in the Stage-2 donor game is unique with α∗i = 0, ∀i, and
equal gifts, g∗i (λ) = g∗ (λ), conditional on λ, that solves

u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
. (5)

In words, each donor wants to invest all of her personal (non-gifted) wealth, w− gi, into
the risk-free asset, which, recall, pays the same expected return as the risky asset. The
equilibrium is unique and symmetric, producing identical gifting policy functions, g∗ (λ).

4.2 Stage 2: Comparative Statics of g∗ (λ)

We now investigate how the equilibrium level of giving, g∗ (λ), changes endowment risk
away from its socially optimal value, λ̂∗ = 0. Let Pv (·) ≡ − v′′′(·)

v′′(·) denote the Arrow-Pratt
coefficients of absolute prudence for felicity function v over the public good. Then:

Theorem 3. Pv (Ng∗ (0)) > 0⇐⇒ λ = 0 is a local minimum of g∗ (λ).

In words, with positive prudence, some endowment risk taking will increase the Nash
equilibrium level of giving relative to the socially-optimal level of risk taking λ̂∗ = 0.23

22Each donor only needs to know the total size of giving, which is standard in public good games. Even
the Nash equilibrium concept can be replaced with a Perfect Bayesian Equilibrium under reasonable con-
ditions, but this modification isn’t necessary since total gifts are generally observable. For example, a uni-
versity typically provides updated information about gifts during a capital campaign.

23The statement in Theorem 3 is sufficient for our purposes. Additional statements, which are proven in
the proof for Theorem 3 can be made. In particular, Pv (·) > 0 =⇒ λ = 0 is a global minimum of g∗ (λ).
Moreover, g∗ (λ) is monotonically decreasing when λ < 0 and monotonically increasing for when λ > 0.
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Figure 1: Gifts Reaction Functions for Two Donors (N = 2)
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Notes: Shows reaction functions and corresponding equilibria for two donors i ∈ {1, 2}, λ ∈
{0.0, 0.25, 0.40}, u(w) = v(w) = w1−γ

1−γ , γ = 4, and αi = 0. Net return to stocks, x̃, take values
in set {−1.,−0.05, 0.05, 1.0} with equal probability. At λ = 0, the reaction functions are linear since
(w0 − gi) = (g1 + g2) at optimum. For λ > 0, reaction functions are slightly nonlinear.

The role of prudence can be explained with equation (5). As the endowment changes λ

from zero, it introduces risk in the second term, E [v (·)]. Donor i makes a “precautionary
donation” with a larger gift, gi, similar to “precautionary savings” with uninsurable risk
(Kimball, 1990). Positive prudence is a standard assumption. DARA preferences, for
example, is a sufficient (but not necessary) condition for positive prudence.

Consider the case of two donors (N = 2), Figure 1 plots the gift reaction functions
of donors i = {1, 2} in gift (g1, g2) space with αi = 0. Donors have constant relative
risk averse felicity (see Figure 1 notes for more details). In the set of reaction functions,
labeled as “λ = 0.0,” the value λ is set to zero and the intersection of the reaction functions
represents the Nash equilibrium level of gifting. (By symmetry, g∗1 = g∗2 , all equilibria lie
on the dotted 45-degree line.) The equilibrium gift level lies below the indicated social
optimum value. For the set of gift reaction functions with λ = 0.25, equilibrium gifts
move closer to the social optimum, helping reduce some free-riding.
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4.3 Stage 1: Optimal λ∗

But, is it actually efficient for the endowment to take on risk? Without free-riding, Theorem
1 shows that the optimal endowment level of risk taking is zero, λ̂∗ = 0. With free-
riding, Theorem 3 shows that endowment risk taking reduces free-riding. So, under what
condition does the benefit to donors from less free-riding exceed the cost from risk taking?

In Stage 1, the endowment solves for its optimal investment policy λ∗ by maximizing
problem (3), given the Nash gift policy functions g∗ (λ) determined in Stage 2. Notice
that if the endowment fails to take on any risk (λ = 0) then Nash gifts are implicitly
determined simply by the relationship,

u′ (1− g∗) = v′ (Ng∗) . (6)

Compare this relationship to equation (4) in Theorem 1 that derives the social optimal
level of giving. The only difference is the presence of N that multiples the marginal utility
of the public good on the right-hand side in equation (4). Intuitively, since the public
good (endowment) is non-rivalrous in consumption, the socially optimal solution linearly
increases the marginal utility of the public good. It is easy to see that g∗(λ = 0) < ĝi

∗, the
now-familiar public goods free-riding problem first identified by Samuelson (1954).24

For exposition, suppose u (·) = v (·). (Footnotes and Appendix A generalize the re-
sults to u (·) 6= v (·)). Denote A (·) ≡ −u′′(·)

u′(·) and P (·) ≡ −u′′′(·)
u′′(·) as the Arrow-Pratt coef-

ficients of absolute risk aversion and absolute prudence, respectively. Recall each donor
has wealth w = 1 before making a gift, and so the donor count N equals total wealth.

Theorem 4. λ = 0 is a local minimum solution to the endowment problem that maximizes
equation (3)⇐⇒ P

( N
N+1

)
> N+1

N−1 · A
( N

N+1

)
when u (·) = v (·).25 Hence, |λ∗| > λ̂∗ = 0.

Theorem 4 shows that the endowment’s optimal investment policy λ∗ is in Nash equi-
librium is to take on risk (by longing or shorting the risky asset26), in fact, by more than
is socially optimal λ̂∗, under a new condition where the felicity’s level of absolute pru-

24Indeed, the expression shown in Theorem 1 is commonly known as the “Samuelson condition.”
25 As shown in the proof to Theorem 4 in Appendix A, for the general case where u (·) and v (·) might be

different, the necessary and sufficient condition is:

(N − 1) Pv (Ng∗ (0)) > Au (1− g∗ (0)) + NAv (Ng∗ (0)) ,

where Pv is the absolute prudence of v. Au and Av are the absolute risk aversions for u and v, respectively.
We focus on the equality case in the text for exposition, thereby dropping the superscripts on P and A.

26Our characterization of risky returns does not distinguish between long or short positions. Any devia-
tion from zero represents risk taking.
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dence is sufficiently larger than its absolute risk aversion. For a finite value of N, this
condition is slightly stronger than the relationship between prudence and risk aversion
that is equivalent to standard Decreasing Absolute Risk Aversion (DARA) preferences,
i.e., P

( N
N+1

)
> A

( N
N+1

)
.27 However, notice that this new condition quickly converges to

DARA in N since the multiplier, N+1
N−1 , in the Theorem-4 condition, converges to 1.

To understand this relationship, first consider the term N
N+1 inside of the P (·) and

A (·) operators in Theorem 4. At λ = 0, equation (6) with u (·) = v (·) implies that the
individual Nash equilibrium gift g∗ (0) = 1

N+1 . Hence, total gifts equal N
N+1 at λ = 0.

At large N, therefore, the Theorem-4 condition simply requires DARA preferences,
P
( N

N+1

)
> A

( N
N+1

)
, at the total levels of gifts with no endowment risk taking, λ = 0.

Intuitively, as shown in the Theorem 3, positive prudence, P (·) > 0, implies that endow-
ment risk taking, |λ∗| > 0, reduces free-riding, thereby capturing the marginal benefit
of additional risk taking. However, as shown in Theorem 1 risk taking is not optimal
without free-riding. The coefficient of relative risk aversion, A (·), captures the marginal
cost of additional risk. It is optimal, therefore, for the endowment to take on risk if the
marginal benefit, P

( N
N+1

)
, exceeds the marginal cost, A

( N
N+1

)
, calculated at the level of

gifts with no risk taking.
The results generalize to the case where N is not large and u (·) 6= v (·), although with

some additional notation.28 Simulation code, to be made available online, considers the
case of E [x̃] > r = 0, consistent with a positive equity premium.29

27DARA is “a very intuitive condition” (Eeckhoudt et al., 2005) and includes commonly-used preferences
such as Constant Relative Risk Aversion. DARA is necessary and sufficient for the absolute amount of risk
taking to increase in wealth, along with many other standard properties (Gollier, 2004).

28At smaller N, the multiplier, N+1
N−1 , is more relevant. Consider the more general Theorem-4 condition

from footnote 25, where we multiply each side by 1
2 E
[
x̃2]:

(N − 1)
1
2

E[x̃2]Pv (Ng∗ (0)) >
1
2

E[x̃2]Au (1− g∗ (0)) + N
1
2

E[x̃2]Av (Ng∗ (0)) .

The left-hand side, which is the Arrow-Pratt approximation for the precautionary equivalent premium
(Kimball, 1990), is exactly equal to the willingness of N− 1 donors to increase their precautionary donations
in response to additional risk taking by the endowment in Nash equilibrium, i.e., it represents the benefit of
additional risk taking to an individual donor. The right-hand side, which is the Arrow-Pratt approximation
for the risk premium, is exactly equal to the premium required by an individual donor to take on the
additional risk, i.e., the cost of additional risk taking. More specifically, the right-hand side is equal to the
direct cost associated with more risk taking by the endowment as a whole, N 1

2 E[x̃2]Av (Ng∗ (0)), and in the
donor’s “private wealth”, 1

2 E[x̃2]Au (1− g∗ (0)). Even though α∗ = 0, the envelope theorem implies that,
in effect, a donor’s private wealth, up to the individual gift level, g∗ (0), is exposed to additional risk.

29To summarize, the key results presented herein remain qualitatively unchanged but generally become
quantitatively stronger. The reason is that first term in equation (5) now contains some risk since α∗ > 0.
This risk creates a competing prudence effect for the endowment, which must increase λ even more to
offset.

14



4.4 Comparison Against the Social Equilibrium

The case of λ = 0.40 in Figure 1 shows that the Nash equilibrium level of gifts can over-
shoot the social optimum level of gifts. Indeed, there exists a value of λ that fully elim-
inates the free-riding problem. Importantly, however, this value of λ is generally not
second-best optimal, as it does not maximize the Stage-1 endowment problem (3).

Intuitively, fully solving the gifts free-riding problem in the Nash game would require
distorting the endowment’s second-best investment policy instrument λ too much. In
fact, for the example shown in Figure 1, where N = 2 and γ = 4, the second-best level
of endowment risk taking, λ∗, is 0! As we show in Section 5, with γ = 4, there must be
at least 10 donors (N ≥ 10) for the necessary and sufficient Theorem-4 condition to be
satisfied with HARA utility (of which Constant Relative Risk Aversion is a special case).

Now assume N = 10. Figure 2 plots the value of expected utility Ω (λ) from equation
(3), where the equilibrium Stage-1 policy functions α∗(λ) and g∗(λ) are Nash. Notice
that the expected utility peaks at a value λ greater than zero but falls at larger values of
λ. Increasing λ above zero reduces free-riding, thereby increasing donor expected utility.
But, raising λ too much, reduces donor utility by distorting risk taking too much.

In sharp contrast, Figure 3 shows the donor expected utility for the same donor prob-
lem where the social planner can directly pick gifts. Notice that expected utility now
peaks at λ = 0, consistent with Theorem 1. In the first-best setting, there is no need to take
on otherwise inefficient risk taking since the free-riding problem can be directly solved.

More generally, the Nash (second-best) expected utility, calculated at the optimal en-
dowment investment policy Ω (λ∗) with |λ∗| > 0, can never produce the socially-optimal
(first-best) level of expected utility. At only a slight abuse of notation, denote ΩSO (λ) as
as the value of expected utility Ω (λ) in equation (3), but where the social planner picks
λ and individual gifts in Stage 1. Then:

Theorem 5. Under the Theorem-4 condition, ΩSO

(
λ̂∗ = 0

)
> Ω (λ∗) > Ω (λ = 0), where

|λ∗| > 0.

The first inequality shows that the socially optimum solution, where social planner di-
rectly picks gifts and the endowment takes no risk, produces larger donor expected util-
ity than the second-best Nash optimum where the only available instrument is for the
endowment to take on investment risk. (This inequality does not require the Theorem-4
condition.) Once in the second-best setting, the second inequality shows that positive risk
taking is optimal under the Theorem-4 condition, as previously proven in Theorem 4.
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Figure 2: Expected Utility: Nash
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Figure 3: Expected Utility: Social Optimum
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Notes for Figures 2 and 3: N = 10, u(w) = v(w) = w1−γ

1−γ , and γ = 4. Net return to stocks, x̃, take values in
set {−1.,−0.05, 0.05, 1.0} with equal probability.
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Figure 4: Investment in Risky Asset Relative to Endowment Size
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1−γ , and γ = 4. Net return to stocks, x̃, take values in set {−1.,−0.05, 0.05, 1.0}
with equal probability. The value of G∗ increases by increasing N.

4.5 A First-Order, Size Effect

Denote G∗(λ) = ~g(λ) ·~1 as sum of all gifts in Nash equilibrium, equal to the size of the
total endowment. Then, the ratio λ∗

G(λ∗) gives the optimal share of the total endowment
invested into risky assets. Figure 4 shows that the optimal share increases in the size
of the endowment, G, with the optimal investment share eventually approaching 100%.
Larger endowments optimally take on substantial risk taking even without fixed costs in
asset management or access to superior expected returns.30

Intuitively, this “size effect” is required to reduce free-riding by each donor i in the
presence of the sum of other gifts, G∗−i(λ) = ~g−i(λ) ·~1. In the Nash game in Stage 2, each
donor i takes G−i as given. A larger G−i creates a “buffer stock” to donor i, reducing the
prudence effect at any given value of λ. As the endowment size G increases, it is optimal
to increase λ faster than G in Stage 1 to recovery the lost prudence effect to each donor.31

30 Section 5 provides analytic examples. Under positive analysis, the shape of the curve in Figure 4 could
be calibrated by picking v(·) as a weighted value of u(·), or giving v(·) its own risk aversion.

31Any “existing assets” from previous periods are identical to donor i facing a large buffer stock G−i.
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5 Examples

We now present three examples, where u(·) = v(·), starting with very general HARA
preferences before narrowing.

5.1 HARA Utility

Consider the HARA class of felicity functions,

u (w) = ζ

(
η +

w
γ

)1−γ

,

on the domain η + w
γ > 0. The first three derivatives are:

u′ (w) = ζ
1− γ

γ

(
η +

w
γ

)−γ

,

u′′ (w) = −ζ
1− γ

γ

(
η +

w
γ

)−γ−1

, and,

u′′′ (w) = ζ
(1− γ) (1 + γ)

γ2

(
η +

w
γ

)−γ−2

.

We naturally assume ζ 1−γ
γ > 0 such that u′ (w) > 0 and u′′ (w) < 0. The coefficients of

absolute risk aversion and prudence are given by

A (w) =

(
η +

w
γ

)−1

, and,

P (w) =
1 + γ

γ

(
η +

w
γ

)−1

,

respectively. Then the Theorem-4 condition,

P
(

N
N + 1

)
>

N + 1
N − 1

· A
(

N
N + 1

)
,

is equivalent to

0 < γ <
N − 1

2
. (7)

For example, with the value γ = 4, as used in the previous examples, it takes just 10
donors for it to be optimal for the endowment to take on investment risk, |λ∗| > 0. Even
smaller values of N are required at smaller values of γ (less concavity). At large N, this
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condition simply becomes 0 < γ < ∞, which is equivalent to DARA preferences.
For the subset of constant relative risk aversion (CRRA) felicity functions (η = 0),

when u(·) and v(·) might be different with relative risk aversion parameters γu and γv,
equation (7) is replaced by:

0 < γu + γv < N − 1 (8)

0 < γv. (9)

Equations (8) and (9) indicate that the more linear the preferences, the lower the required
hurdle value for N. These conditions support very flexible preferences.

Remark (Quasi-linear utility). Preferences can be quasi-linear. In the extreme, preferences over
non-charitable consumption can be linear, γu = 0, and preferences over charitable consumption
can be arbitrarily close to linear, γv → 0+. If γv = 0 then it would be socially optimal for each
donor to donate all of her wealth above a small non-charitable value.

The model also accommodates so-called “deterministic” planning goals.

Remark (“Deterministic” future expenses). If the endowment’s sponsor’s future spending
goals are fully fixed (“deterministic”), then γv = ∞. In this case, condition (8) cannot hold
for any finite value of N, and so the optimal endowment risk is zero, λ∗ = 0. However, γv = ∞
also implies that non-charitable consumption, 1− gi, converges to zero even in Nash equilibrium.
More realistically, suppose that future spending goals by the endowment’s sponsor are at least
somewhat flexible. Then, the value of γv is finite and there exists a finite value of N where endow-
ment risk taking is optimal, |λ∗| > 0. For example, suppose γu = 4 and γv = 20, suggesting
high risk aversion to the endowment’s asset value falling short of expectation. Then, an endowment
with N ≤ 25 donors optimally takes no risk while an endowment with N ≥ 26 does.

5.2 Log Utility with a Two-Point Risk Distribution

Consider the subset of the HARA felicity set with constant relative risk aversion (CRRA):

u (w) =
w1−γ

1− γ
.
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Then u′ (w) = w−γ. The social optimally gift level without endowment risk taking is:32

ĝ∗
(

λ̂∗ = 0
)
=

N1/γ

N1/γ + N

=
1
2

, where γ = 1 (i.e., log utility).

As noted, the second equality represents the special case of log utility, u (w) = ln (w).
To compute the corresponding Nash equilibrium, we focus on the case of log utility

(γ = 1) in the remainder of this example. Then, the Theorem-4 condition,

P
(

N
N + 1

)
>

N + 1
N − 1

· A
(

N
N + 1

)
,

is satisfied for all N > 3. Furthermore, to obtain analytic solutions for the Nash game,
suppose x̃ follows a two-point distribution that takes the values +1 and −1 with equal
probability, 1

2 .33 Then, the Nash equilibrium donation is

g∗ (λ) =
N +

√
N2 + 4N (N + 1) λ2

2N (N + 1)
. (10)

Equation 10 implies that if λ were set at zero (no endowment risk taking), then g∗(λ =

0) = 1
N+1 , which is less than the social optimal value of 1

2 , with N > 3. Importantly,
individual Nash gifts converge to zero in N while total gifts G∗ = Ng∗(0) converges to
just unity. At Stage 1, the endowment, therefore, optimally chooses λ to grow with N:

Theorem 6. Suppose felicity is log and let x̃ follow a two-point distribution that takes the values

+1 and −1 with equal probability. Then, |λ∗| =
√

N(N−3)
4 and g∗ (λ∗) = 1

4 .

Notice that individual gift giving now stays constant at 1
4 . (Total gift giving, therefore,

rises linearly with N.) Of course, this gift level is below the socially optimal level, 1
2 ,

derived above. In the Nash game, setting λ at a larger value than shown in Theorem 6
would generate generate larger gifts but at the cost of too much distortion to λ.

32For HARA, the socially optimal gift (with λ̂∗ = 0) is

ĝ∗ =
(N)1/γ +

(
(N)1/γ − 1

)
γη

(N)1/γ + N
.

33For the socially optimum, the risk distribution is irrelevant since λ̂∗ = 0.
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Moreover, the optimal endowment share invested in risky assets is equal to

|λ∗|
G∗ (λ∗)

=
|λ∗|

Ng∗ (λ∗)
=

√
N(N − 3)/4

N/4
=
√

1− 3/N.

At N = 3, the Theorem-4 condition is violated, and so the endowment takes no risk. For
N > 3, optimal risk-taking increases in N, converging to 1 in endowment size (G∗ = N

4 ).

5.3 CARA Utility

Our final example tests the boundary of the Theorem-4 condition, which, recall, is suffi-
cient and necessary for the endowment to take on risk in the Nash game, |λ∗| > 0.

Consider the case of Constant Absolute Risk Aversion (CARA) felicity:

u (w) = −e−γw

The socially optimal level of individual gifts are:

ĝ∗(λ̂∗ = 0) =
1

N + 1

(
1 +

ln N
γ

)
.

For the Nash game, to obtain an analytic solution, assume that x̃ is normally dis-
tributed with expectation 0 and and variance σ2. The Nash gift policy function is

g∗ (λ) =
1

N + 1

(
1 +

1
2

γσ2λ2
)

. (11)

Like the CRRA example considered above, if λ were set to zero, then individual gifts
g∗ (λ = 0) fall to zero in N and the value of the total gift, Ng∗, approaches the value of
just unity. Moreover, individual gifts are below the socially optimal level of gifts.

However, CARA presents a problem not previously found with CRRA. In particular,
CARA felicity implies that P

( N
N+1

)
= γ = A

( N
N+1

)
< N+1

N−1 · A
( N

N+1

)
. Hence, CARA vio-

lates the Theorem-4 condition, even if “just barely” at large N. As a result, in Stage 1, it is
no longer optimal for the endowment to take on more risk to increase individual gifts.

Theorem 7. Suppose felicity takes the CARA form and let x̃ follow a normal distribution with
expectation 0 and variance σ2. Then, λ∗ = 0 and g∗ (λ∗) = 1

N+1 .

Of course, it is important to remember that while CARA felicity is popular for pro-
ducing analytic solutions, it also implies an implausible attitude toward risk aversion.
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For example, each coauthor of this paper is substantially less wealthy than billionaire Bill
Gates. Yet, CARA discards the usual Inada condition (which predicts that marginal utility
approaches infinity as wealth approaches zero). So, CARA predicts that each coauthors
would hold the same dollar amount in risky assets as Bill Gates, by shorting the risk-free
asset by, in our individual cases, quite sadly, a nearly similar amount!

6 Conclusions

This paper revisits the large literature on endowment investing but with a more com-
plete micro-foundation that starts with a donor’s objective function. Under a condition—
which quickly converges to standard DARA preferences in the number of donors—we
show that risk taking reduces donor free-riding, is Pareto improving, and is required by
competition among endowments for donations, or, even more generally, by imperfect
competition with complete information. Large endowments optimally take substantial
risk even if donors are very averse to changes in endowment spending and expensive,
risky investments don’t outperform cash on average.

A strong cross-sectional “size effect” also emerges, where endowment risk taking in-
creases in the size of the endowment. It is efficient for a large endowment to take on
substantial risk even without the presence of fixed costs and even if the endowment does
not have access to unique risk asset classes relative to its donors. In fact, risk taking is op-
timal even if the endowment’s sponsors are very risk averse to changes in spending and
use expensive investments that don’t over-perform cash on average. The model, there-
fore, also shows that it is optimal for smaller endowments to take on less risk, even in the
presence of more modern outsourced “endowment style” turnkey investment solutions.

Analogously to the Modigliani-Miller theorem, the focus of this paper is normative
(deriving the optimal behavior of endowments facing many donors) rather than positive
(describing how endowments actually behave). The normative focus lays a foundation
for identification of agency issues. Indeed, our results challenge the conventional think-
ing about the relationship between endowment risk taking and agency. A low level of
risk taking by a large endowment likely indicates a principal-agent conflict, where a non-
diversified endowment investment manager, knowingly or unknowingly, exploits the in-
complete information or bounded rationality of its donors.

The normative approach naturally lends itself to possible extensions, including un-
derstanding the potential value of organized capital campaigns that are often used in
endowment fund raising. At first blush, capital campaigns would appear to give endow-
ments an additional tool to reduce free-riding, even if a fairly weak one. At the same
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time, capital campaigns could mainly serve as economies of scale in messaging the char-
ity’s new set of common goals, which then becomes the main source of free-riding in giv-
ing. Measurement is potentially confounded by data limitations34as well as endogeneity
problems, where charities facing greater free-riding are more likely to engage in multiple
mechanisms to reduce it. Future work can explore this important issue in more detail.
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Appendices

A Proofs

Theorem 1

Stage 2 For given donation vector ~g and investment level λ of the endowment fund, the
optimal private investment decision vector (α̂∗1 , ..., α̂∗N) is the solution to the follow-
ing maximization problem

max
α1,...,αN

N

∑
i=1

EU (λ,~α,~g) =
N

∑
i=1

E [u (1 + αi x̃− gi)] + NE

[
v

(
N

∑
i=1

gi + λx̃

)]
.

The FOCs are

∂ ∑N
i=1 EU (λ,~α,~g)

∂αi
= E

[
x̃u′ (1 + αi x̃− gi)

]
= 0.

The SOCs are

∂2 ∑N
i=1 EU (λ,~α,~g)

∂α2
i

= E
[

x̃2u′′ (1 + αi x̃− gi)
]
< 0,

and thus satisfied. For αi = 0, we derive

∂ ∑N
i=1 EU (λ,~α,~g)

∂αi
|αi=0= 0.

α̂∗i = 0 for all i = 1, .., N is thus the unique global maximum.

For a given investment level λ of the endowment fund, the social planner picks the
gift vector (ĝ∗1 , ..., ĝ∗N) to maximize

N

∑
i=1

EUi

(
λ,~̂α

∗
=~0,~g

)
=

N

∑
i=1

u (1− gi) + NE

[
v

(
N

∑
i=1

gi + λx̃

)]
.

The FOCs are

∂ ∑N
i=1 EUi

(
λ,~0,~g

)
∂gi

= −u′ (1− gi) + NE

[
v′
(

N

∑
i=1

gi + λx̃

)]
= 0.
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The SOCs are satisfied since

∂2 ∑N
i=1 EUi

(
λ,~0,~g

)
∂g2

i
= u′′ (1− gi) + NE

[
v′′
(

N

∑
i=1

gi + λx̃

)]
< 0.

The unique optimal donation ĝ∗i (λ) is thus the solution to the FOC

u′ (1− ĝ∗i (λ)) = NE

[
v′
(

N

∑
i=1

ĝ∗i (λ) + λx̃

)]
.

This condition implies ĝ∗1 (λ) = ... = ĝ∗N (λ) = ĝ∗ (λ) and thus

u′ (1− ĝ∗ (λ)) = NE
[
v′ (Nĝ∗ (λ) + λx̃)

]
.

Stage 1 The optimal investment decision of the endowment fund λ̂∗ is the solution to the
following maximization problem

max
λ

ΩSO (λ) = u (1− ĝ∗ (λ)) + E [v (Nĝ∗ (λ) + λx̃)] .

The FOC is

Ω′SO (λ) = −ĝ∗′ (λ) u′ (1− ĝ∗ (λ)) + E
[(

Nĝ∗′ (λ) + x̃
)

v′ (Nĝ∗ (λ) + λx̃)
]
= 0.

Substitution of the FOC at Stage 2 yields

Ω′SO (λ) = E
[
x̃v′ (Nĝ∗ (λ) + λx̃)

]
= 0.

The concavity of v (·) implies

Ω′SO (λ) > 0 for all λ < 0,

Ω′SO (0) = 0, and,

Ω′SO (λ) < 0 for all λ > 0.

Expected utility is thus globally concave in λ and λ̂∗ = 0 is the unique global maxi-
mum. Last, the FOC for ĝ∗

(
λ̂∗ = 0

)
then yields

u′ (1− ĝ∗ (0)) = Nv′ (Nĝ∗ (0)) .
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Note: If u ≡ v, then ĝ∗ (0) > 1
N+1 as

u′
(

1− 1
N + 1

)
< Nu′

(
N · 1

N + 1

)
and u′′ < 0.

Theorem 2

Without loss of generality we consider investor 1. Given the donations of all other in-
vestors ~g−1 = (g2, ..., g N), their investment levels~α−1 = (α1, ..., αN), and the investment
level λ of the endowment, investor 1’s best response function α∗1 (λ,~α−1,~g−1) is given by
the solution to the following maximization problem

α∗1 (λ,~α−1,~g−1) ∈ arg max
α1

EU1 (λ, α1,~α−1, g1,~g−1) with

EU1 (λ, α1,~α−1, g1,~g−1) = E [u (1 + α1x̃− g1)] + E

[
v

(
g1 +

N

∑
i=2

gi + λx̃

)]
.

The FOC for the best response function is

∂EU1 (λ, α1,~α−1, g1,~g−1)

∂α1
= E

[
x̃u′ (1 + α1x̃− g1)

]
= 0.

The SOC for the best response function holds as

∂2EU1 (λ, α1,~α−1, g1,~g−1)

∂α2
1

= E
[

x̃2u′′ (1 + α1x̃− g1)
]
< 0 for all (λ, α1,~α−1, g1,~g−1) .

Evaluating the FOC at α1 = 0 yields

∂EU1 (λ, α1,~α−1, g1,~g−1)

∂α1
|α1=0= 0 for all (λ,~α−1, g1,~g−1) .

α∗1 (λ,~α−1, g1,~g−1) = 0 is thus the unique global maximum. Analogously, α∗i (λ,~α−i, gi,~g−i) =

0 for all i and it is thus the unique global maximum of the best response function of in-
vestor i. Thus, α∗i (λ, gi,~g−i) = 0 for all i is the unique Nash equilibrium for all (λ, gi,~g−i).

Given the donations ~g−1 of all other investors, investor 1’s best response function
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g∗1 (λ,~g−1) is given by the solution to the following maximization problem

g∗1 (λ,~g−1) ∈ arg max
g1

EU1 (λ, g1,~g−1) with

EU1 (λ, g1,~g−1) = u (1− g1) + E

[
v

(
g1 +

N

∑
i=2

gi + λx̃

)]
.

The FOC for the best response function is

∂EU1 (λ, g1,~g−1)

∂g1
= −u′ (1− g1) + E

[
v′
(

g1 +
N

∑
i=2

gi + λx̃

)]
= 0.

The SOC for the best response function holds as

∂2EU1 (λ, g1,~g−1)

∂g2
1

= u′′ (1− g1) + E

[
v′′
(

g1 +
N

∑
i=2

gi + λx̃

)]
< 0.

Therefore, there exists a unique solution g∗1 (λ,~g−1) to the above optimization problem
which is determined by the FOC. We denote the Nash equilibrium by (g∗1 (λ) , ..., g∗N (λ))

which satisfies

u′ (1− g∗1 (λ)) = u′ (1− g∗i (λ))

= E

[
v′
(

N

∑
i=1

g∗i (λ) + λx̃

)]

for all i. Thus g∗1 (λ) = ... = g∗N (λ) = g∗ (λ) which is given by the FOC

u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
.

Theorem 3

We derive the first- and second-order effects of changes in the investment policy λ on
the Nash gift policy functions g∗ (λ). Implicitly differentiating the FOC for the Nash
equilibrium with respect to λ yields

−g∗′ (λ) u′′ (1− g∗ (λ)) = E
[(

Ng∗′ (λ) + x̃
)

v′′ (Ng∗ (λ) + λx̃)
]

,

i.e.,

g∗′ (λ) = − E [x̃v′′ (Ng∗ (λ) + λx̃)]
u′′ (1− g∗ (λ)) + NE [v′′ (Ng∗ (λ) + λx̃)]

.
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Evaluating this equation at λ = 0 yields g∗′ (0) = 0. Taking the second deriative of the
FOC of the Nash equilibrium with respect to λ yields

−g∗′′ (λ) u′′ (1− g∗ (λ)) +
(

g∗′ (λ)
)2 u′′′ (1− g∗ (λ))

= Ng∗′′ (λ) E
[
v′′ (Ng∗ (λ) + λx̃)

]
+ E

[(
Ng∗′ (λ) + x̃

)2 v′′′ (Ng∗ (λ) + λx̃)
]

.

Evaluating this equation at λ = 0 yields

−g∗′′ (0) u′′ (1− g∗ (0)) = Ng∗′′ (0) v′′ (Ng∗ (0)) + E
[

x̃2
]

v′′′ (Ng∗ (0)) ,

which implies

g∗′′ (0) = −
E
[
x̃2] v′′′ (Ng∗ (0))

u′′ (1− g∗ (0)) + Nv′′ (Ng∗ (0))
.

λ = 0 is a local minimum if and only if g∗′′ (0) > 0. This holds if and only if v′′′ (Ng∗ (0)) >
0 which is identical to the condition Pv (Ng∗ (0)) > 0.

Now suppose Pv (·) > 0. This implies

E
[
x̃v′′ (Ng∗ (λ) + λx̃)

]
< 0 for all λ < 0, and,

E
[
x̃v′′ (Ng∗ (λ) + λx̃)

]
> 0 for all λ > 0,

and thus

g∗′ (λ) < 0 for all λ < 0,

g∗′ (0) = 0, and,

g∗′ (λ) > 0 for all λ > 0.

λ = 0

is thus the global minimum of g∗ (λ).

Theorem 4

The endowment fund selects the optimal investment strategy λ∗ by maximizing the ex-
pected utility of a single donor, Ω (λ). It is thus given by the solution to the following
maximization problem

λ∗ ∈ arg max
λ

Ω (λ) = u (1− g∗ (λ)) + E [v (Ng∗ (λ) + λx̃)] .
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The first derivative is

Ω′ (λ) = −g∗′ (λ) u′ (1− g∗ (λ)) + E
[(

Ng∗′ (λ) + x̃
)

v′ (Ng∗ (λ) + λx̃)
]

.

Substitution of the condition for the Nash equilibrium at Stage 2 yields

Ω′ (λ) = E
[(
(N − 1) g∗′ (λ) + x̃

)
v′ (Ng∗ (λ) + λx̃)

]
.

Evaluating this derivative at λ = 0 yields Ω′ (0) = 0.
The second derivative is given by

Ω′′ (λ) = (N − 1) g∗′′ (λ) E
[
v′ (Ng∗ (λ) + λx̃)

]
+E

[(
(N − 1) g∗′ (λ) + x̃

) (
Ng∗′ (λ) + x̃

)
v′′ (Ng∗ (λ) + λx̃)

]
.

Evaluating this second derivative at λ = 0 yields

Ω′′ (0) = (N − 1) g∗′′ (0) v′ (Ng∗ (0)) + E
[

x̃2
]

v′′ (Ng∗ (0))

= − (N − 1)
E
[
x̃2] v′′′ (Ng∗ (0))

u′′ (1− g∗ (0)) + Nv′′ (Ng∗ (0))
v′ (Ng∗ (0)) + E

[
x̃2
]

v′′ (Ng∗ (0))

= E
[

x̃2
] (
− (N − 1) v′′′ (Ng∗ (0)) v′ (Ng∗ (0))

u′′ (1− g∗ (0)) + Nv′′ (Ng∗ (0))
+ v′′ (Ng∗ (0))

)
.

λ = 0 is a local minimum if and only if Ω′′ (0) > 0. With the FOC of the Nash equilibrium,
u′ (1− g∗ (0)) = v′ (Ng∗ (0)), we derive that Ω′′ (0) > 0 if and only if

(N − 1) Pv (Ng∗ (0)) > Au (1− g∗ (0)) + NAv (Ng∗ (0)) .

Corollary 1. If u (·) = v (·), then g∗ (0) = 1
N+1 and λ = 0 is a local minimum if and only if

P
(

N
N + 1

)
>

N + 1
N − 1

· A
(

N
N + 1

)
.

Theorem 5

The second inequality, Ω (λ∗) > Ω (λ = 0) with |λ∗| > 0, is the result of Theorem 4.
For the first inequality, note that the socially optimal λ̂∗ = 0, while the Nash equilibrium
implies |λ∗| > 0. (The value αi = 0 is optimal both socially and in the Nash equilibrium.)

33



We then have

ΩSO

(
λ̂∗ = 0

)
= EU

(
λ̂∗ = 0, ĝ∗

(
λ̂∗ = 0

))
> EU ((λ∗, ĝ∗ (λ∗))

> EU ((λ∗, g∗ (λ∗)) = Ω (λ∗) ,

where |λ∗| > 0. The first inequality comes from knowing that the socially optimal value
of λ̂∗ = 0 maximizes donor expected utility, equation (3). Hence, any other choice of
λ 6= 0, including the value in the Nash equilibrium, λ∗, must produce a smaller expected
utility, if inserted into the social optimal gift policy function. The second inequality fol-
lows from the fact that the social optimum problem maximizes donor expected utility,
thereby producing a larger expected utility than in the Nash equilibrium, conditional on
the same value of λ.

Theorem 6

Stage 2 The Nash equilibrium gifts g∗ (λ) are given by the condition

u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
.

Solving this condition for u (w) = ln (w) and x̃ following a two-point distribution
that takes the values +1 and −1 with equal probability yields equation (10)

g∗ (λ) =
N +

√
N2 + 4N (N + 1) λ2

2N (N + 1)
.

The first derivative of the gift policy function is

g∗′ (λ) =
2λ√

N2 + 4N (N + 1) λ2
.

Stage 1 The optimal investment strategy λ∗ is given by the solution to the maximization
problem

λ∗ ∈ arg max
λ

Ω (λ) = u (1− g∗ (λ)) + E [v (Ng∗ (λ) + λx̃)] .

For u (w) = ln (w) and x̃ following a two-point distribution we derive
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Ω (λ) = ln (1− g∗ (λ)) +
1
2
(ln (Ng∗ (λ) + λ) + (Ng∗ (λ)− λ)) .

Note that both g∗ (λ) and Ω (λ) are symmetric in λ. We thus focus on λ ≥ 0.
Furthermore, the domain restriction λ < N ensures that Ω (λ) is well-defined, i.e.
1− g∗ (λ) > 0 and Ng∗ (λ)− λ > 0.

Substituting the condition for the Nash equilibrium gifts at Stage 2 into the first
derivative yields

Ω′ (λ) = E
[(
(N − 1) g∗′ (λ) + x̃

)
v′ (Ng∗ (λ) + λx̃)

]
=

N (N − 1) g∗′ (λ) g∗ (λ)− λ

(Ng∗ (λ) + λ) (Ng∗ (λ)− λ)
.

The denominator is strictly positive. Solving the FOC Ω′ (λ) = 0 yields the solutions

λ = 0 and λ =

√
N(N−3)

4 .

Moreover, it can be shown that

Ω′ (0) = 0,

Ω′ (λ) > 0 for all 0 < λ <

√
N (N − 3)

4
,

Ω′
(√

N (N − 3)
4

)
= 0, and,

Ω′ (λ) < 0 for all

√
N (N − 3)

4
< λ < N.

Taking into account the symmetry of Ω (λ), we conclude that λ = 0 is a local mini-

mum and the global maximum is attained at |λ∗| =
√

N(N−3)
4 .

Evaluating the Nash equilibrium gifts at λ∗ implies

g∗ (λ∗) =
1
4

.

Theorem 7

Stage 2 The Nash equilibrium gifts g∗ (λ) are given by the condition
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u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
.

Solving this condition for u (w) = −e−γw and x̃ following a normal distribution
with expectation 0 and variance σ2 yields equation (11)

g∗ (λ) =
1

N + 1

(
1 +

1
2

γσ2λ2
)

.

Note that E
[
e−γλx̃] = e

1
2 γ2σ2λ2

. The first derivative of the gift policy function is

g∗′ (λ) =
γσ2λ

N + 1
.

Stage 1 The optimal investment strategy λ∗ is given by the solution to the maximization
problem

λ∗ ∈ arg max
λ

Ω (λ) = u (1− g∗ (λ)) + E [v (Ng∗ (λ) + λx̃)] .

For u (w) = −e−γw and x̃ following a normal distribution with expectation 0 and
variance σ2 we derive

Ω (λ) = −2e−
γ

N+1(N− 1
2 γσ2λ2).

The first derivative yields

Ω′ (λ) = −2γ2σ2

N + 1
λe−

γ
N+1(N− 1

2 γσ2λ2).

This implies

Ω′ (λ) > 0 for all λ < 0,

Ω′ (0) = 0, and,

Ω′ (λ) < 0 for all λ > 0.

λ∗ = 0 is thus the unique maximum. Evaluating the Nash equilibrium gifts at
λ∗ = 0 implies

g∗ (λ∗) =
1

N + 1
.
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