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Abstract

In a model with irreversible capacity investments, we show that �nancial statements prepared

under replacement cost accounting provide investors with su�cient information for equity valuation

purposes. Under alternative accounting rules, including historical cost and value in use accounting,

investors will generally not be able to value precisely a �rm's growth options and, therefore, its

equity. For these accounting rules, we describe the range of valuations that is consistent with

the �rm's �nancial statements. We further show that replacement cost accounting preserves all

value-relevant information if the �rm's investments are reversible. However, the directional relation

between the value of the �rm's equity and the replacement cost of its assets is di�erent from that

in the setting with irreversible investments.



1 Introduction

The FASB Conceptual Framework for Financial Reporting (FASB 2010) states that �the

objective of general purpose �nancial reporting is to provide �nancial information about the

reporting entity that is useful to existing and potential investors, lenders, and other creditors

in making decisions about providing resources to the entity.� To achieve this objective, it is

important to understand the informational needs of di�erent groups of �nancial statements

users, including the current and potential future shareholders of the �rm. However, the

existing theoretical literature on accounting-based equity valuation provides little guidance

on the relative desirability of alternative accounting rules (see, e.g., Ohlson 1995, Feltham

and Ohlson 1995).1 In a model without uncertainty, Nezlobin (2012) shows that replacement

cost accounting is essentially the only depreciation policy under which there exists a mapping

between a �rm's current accounting data and its equity value. The goal of this study is

to characterize how the resolution of di�erent types of uncertainty in the �rm's economic

environment should get re�ected in its �nancial statements to provide information useful to

equity investors.

We apply the real options framework to the problem of accounting based valuation under

uncertainty. In the model, a representative �rm makes repeated investments in capital goods

and uses the resulting capital stock for production. Initially, we assume that the �rm's

investments are irreversible - once purchased and put in place (or constructed), the �rm's

capital goods cannot be sold. In practice, investments can be fully or partially irreversible

because they are �rm-speci�c (e.g., highly specialized equipment or R&D), industry-speci�c,

or because the market for used capital goods is a�ected by the �lemons� problem (see, e.g.,

Dixit and Pindyck, 1994, p.8). Pindyck (1988) characterizes the �rm's optimal investment

policy under the assumption that demand for its product is stochastic. We extend the model

of Pindyck (1988) and Dixit and Pindyck (1994, Chapter 11) to allow for (i) a stochastic

rate of physical depreciation of the �rm's assets in place and (ii) a stochastic price of new

1Most commonly cited valuation models, such as Ohlson (1995), Feltham and Ohlson (1995), and Ohlson
and Juettner-Nauroth (2005), express the value of a �rm as a function of accounting variables, assuming an
exogenous process for �rm's residual earnings. These papers do not specify the accounting rules that need
to be applied in di�erent economic environments to generate a residual earnings process conforming to the
assumed speci�cation. For example, one of the main questions raised by Penman (2005) in his discussion
of Ohlson and Juettner-Nauroth (2005) was �Where's the accounting?� Several papers explicitly model
accounting rules but treat both investment and cash �ow processes as exogenous, see, e.g., Feltham and
Ohlson (1996), Ohlson and Zhang (1998) and X. Zhang (2000).
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capital goods. All three stochastic processes that determine the �rm's economic environment

- demand for the �rm's output, the physical productivity of its assets in place, and the price

of new capital goods - are allowed to be mutually correlated. In the second part of the paper,

we solve the model under the assumption that investments are fully reversible and juxtapose

these results to the ones obtained in the setting with irreversibility.

Equity investors in our model know the constant parameters of the �rm's economic

environment, e.g., the mean and variance of the growth rate of the output market size.

However, they do not observe the realizations of the underlying stochastic processes, e.g.,

the actual size of the output market. In valuing the �rm's equity, investors rely on the �rm's

�nancial statements to gather information about its assets in place and cash �ows. Our

objectives are twofold. First, we identify accounting rules with the property that the �rm's

equity value can be precisely determined based on its accounting information.2 Second, for

commonly considered accounting rules without this property, we seek to characterize the

range of valuations consistent with the �rm's �nancial statements.

We start by showing that in the setting with irreversible investments the �rm's optimal

investment policy is of a barrier control type. Speci�cally, the �rm invests only when the

ratio of its operating cash �ow to the replacement cost of its capital stock exceeds a certain

threshold. We refer to this ratio as the cash return on economic assets or, simply, cash

return on assets when there is no room for confusion.3 The �rm's investment increases both

the numerator and the denominator of this ratio. Under the standard assumption that the

marginal revenue with respect to capital is decreasing in capital stock, the overall ratio falls

with investment. The �rm chooses its investment so as to return the ratio of operating

cash �ows to the replacement cost of assets to a level just below the optimal investment

threshold. Consistent with much of the real options literature, the NPV of the marginal

project at the investment threshold is strictly greater than zero: the �rm optimally takes

into account the fact that the investment can be postponed if market conditions improve

but cannot be undone if they deteriorate. The NPV of the marginal project is thus equal to

2We take it as given that the �rm's shareholders seek to estimate the present value of the �rm's cash �ows,
which is consistent with much of the neoclassical and real options literature. The demand for accounting
information in our model then stems from this exogenously assumed goal of shareholders. The focus of our
paper is similar to that of Hughes et al. (2004), who provides a more in-depth discussion of the di�erent
perspectives on demand for accounting disclosures.

3In our model, the �rm is all-equity �nanced, there are no taxes and no accruals other than the ones
related to capital assets (depreciation and revaluations). Therefore, the operating cash �ow is essentially
equal to the �rm's earnings before interest, taxes, depreciation and amortization (EBITDA).
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the opportunity cost of the option to wait.

The model allows us to derive an analytical expression for the �rm's equity value. Specif-

ically, the �rm's value is equal to the sum of two components: the present value of cash �ows

to be generated by existing assets and the value of the �rm's capacity expansion (growth)

options.4 The value of cash �ows from existing assets can be calculated by multiplying the

current operating cash �ow by a capitalization factor that re�ects the �rm's cost of capital

and other parameters of the the �rm's economic environment, such as the expected growth in

demand for �rm's output and the drift and variance of the asset productivity process. The

value of the capacity expansion options is proportional to the present value of cash �ows

from existing assets with the coe�cient of proportionality being determined by the distance

between the current cash return on assets ratio and the optimal investment threshold.

It follows that if the book value of assets in the �rm's �nancial statements reveals their

replacement cost, investors will have su�cient information to value the �rm precisely at

each point in time. It is important to note that we obtain this result in the setting with

irreversible investment, i.e., even though the �rm cannot sell its current assets, knowing

their replacement cost is crucial for investors in valuing the �rm's future growth options. In

contrast, we show later that in the absence of optionality, i.e., when the �rm's investments

are fully reversible, precise valuation may still be possible even when the replacement cost

of assets is not directly reported to investors. The assumption of investment irreversibility

is solely responsible for the unique importance of replacement cost disclosures.

We refer to an accounting system that sets the book value of assets equal to their replace-

ment cost as replacement cost accounting. The replacement cost of assets can be viewed as

the amount that the �rm would have to pay at the current price of new capital goods to

replicate the productive capacity of its existing capital stock. Alternatively, the replacement

cost can be calculated for each vintage of capital goods as the depreciated historical cost of

that vintage (re�ecting all shocks to the productivity of assets incurred up to the current

date) multiplied by the ratio of the price of new assets today to the price of new assets at the

time of purchase. The notion of replacement cost accounting used in this study has a long

history in accounting thought: for example, it is closely related to the concept of �current

operating pro�t� in Edwards and Bell (1961). It is further consistent with the cost approach

4Similar decompositions have been obtained in other settings; see, for instance, Lindenberg and Ross
(1981), Berk et al. (1999), Abel and Eberly (2011), and Kogan and Papanikolaou (2014).
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to fair value measurement de�ned in IFRS 13 as �a valuation technique that re�ects the

amount that would be required currently to replace the service capacity of an asset (often

referred to as current replacement cost).�

Next we explore the informational properties of alternative accounting rules. We start by

assuming that the �rm prepares �nancial statements on a cash basis, i.e., investors observe

only the cash �ows from operating and investment activities. While cash �ow information

alone is not su�cient for valuation purposes in all states of the world, investors can (i) value

the �rm precisely when new investment is observed, and (ii) always put upper and lower

bounds on the �rm's equity value. In the investment region, where the �rm is expanding

its capacity, the replacement cost of assets in place does not provide incremental value-

relevant information relative to the �rm's operating cash �ow. The mere fact that the �rm

is exercising its expansion options tells investors that the cash return on assets ratio is at

the investment threshold. This information is then su�cient to value the �rm conditional

on the value of the operating cash �ow. In the inaction region (i.e., when cash return on

assets is below the investment threshold), the �rm's expansion options cannot be valued

precisely without knowing the replacement cost of assets in place. However, their value can

be bounded from below by zero and from above by the value of growth options assuming

the �rm had been at the investment threshold.5

These results demonstrate that while �nancial statements prepared on a cash basis pro-

vide useful information to investors, they are not su�cient to accurately value the �rm's

growth options in the inaction region. We further show that the bounds on the �rm's value

obtained under cash accounting cannot be improved if �nancial statements are prepared

using value in use accounting (where the book value of assets at each date is set equal to the

present value of cash �ows that they are expected to generate) or historical cost account-

ing (assets are carried at historical cost with depreciation re�ecting the physical shocks to

productivity). The reason for this is that the value of the �rm's capacity expansion options

depends on the current price of new capital goods, and the changes in the price of new capital

goods do not get re�ected in the �nancial statements under historical cost or value in use

accounting if the �rm is in the inaction region.

Next, we model a conditionally conservative accounting system, under which the book

5Accordingly, the �rm's equity value is bounded by the present value of cash �ows from existing assets
and by the value of the �rm had it been at the investment threshold.
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value of assets is written down immediately if it exceeds their replacement cost, but is not

written up if the replacement cost is higher.6 We show that �nancial statements prepared

under such rules allow investors to improve (relative to cash basis accounting) only the

upper bound on the value of the �rm's growth options and, therefore, on its equity value. If

accounting is conservative, then the book value of assets always understates their replacement

cost. Therefore, the reported cash return on assets, i.e., the ratio of operating cash �ow to

the book value of assets, can serve as an upper bound for the cash return on economic assets.

The value of capacity expansion options is monotonically increasing in the cash return on

economic assets, so this value can be more precisely bounded from above if accounting is

conditionally conservative.

We also consider a scenario where the �rm's investments are fully reversible: the �rm's

capital goods can be sold at the price of new capital goods with equivalent productive

capacity. In this setting, the value of the �rm's equity is also shown to depend on the

current replacement cost of the �rm's capital stock. However, the direction of the relation

between the �rm's equity value and the replacement cost of its assets switches to the opposite:

with reversible investments, the replacement cost of assets is positively associated with the

equity value.7 When the �rm cannot revise its capital stock downwards, a high replacement

cost of assets indicates that the value of growth options is low (new assets are too expensive

or the �rm has too much capacity already). On the other hand, if investments are reversible,

then the �rm would keep assets with a high replacement cost only if the present value of

cash �ows to be generated by those assets is even higher. Therefore, the relation between

the replacement cost of assets and the �rm's equity value critically depends on whether the

�rm is able to sell its used capital goods. These results caution against judging the value

relevance of an accounting amount by the magnitude of its coe�cient in a market value

regression without explicitly controlling for liquidity of the assets in question.

Interestingly, in the setting with reversible investment, the �rm can be valued precisely

6Here, we consider a conditionally conservative system based on replacement cost accounting. In practice,
the standards for asset impairments are di�erent under U.S. GAAP and IFRS, and the write-down amounts
are determined by di�erent quantities, including the asset's value in use and its fair value. We discuss an
application of our model to a setting where asset write-downs are recognized according to IAS 36 in Appendix
B.

7This result also holds when the only source of uncertainty in the model is demand in the �rm's output
market. In this special case, there is no di�erence between replacement cost and historical cost disclosures.
Therefore, our result suggests that the direction of the relationship between the �rm's equity value and its
historical cost book value of assets also depends on investment reversibility.
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even if the �nancial statements are prepared under value in use accounting. When the �rm

can freely adjust its capital stock in either direction, the replacement cost of assets and value

in use are proportional to each other at all times on the optimal investment path and thus

carry the same information. In contrast, in the setting with irreversible investment, the ratio

of the assets' value in use to their replacement cost is stochastic in the inaction region.

This study is related to several strands of research in �nance and accounting. First, our

�nding that investment is determined by the operating cash �ow and replacement cost of as-

sets in place is consistent with much of the theoretical and empirical literature on investment

(see, e.g., Hayashi 1982, Lewellen and Badrinath 1997, Abel and Eberly 2011). We extend

this literature by allowing for stochastic productivity of existing assets in the setting with

irreversible investment. Our �nding that replacement cost accounting provides useful infor-

mation to investors is further consistent with the empirical evidence in Gordon (2001). Our

paper also contributes to the growing accounting literature on real options. Several papers

examined the problems of incentive provision and product pricing with optionality (see, e.g.,

Arya and Glover 2001, Pfei�er and Schneider 2007, Caskey and Hughes 2012, Johnson et

al. 2013, Reichelstein and Rohl�ng-Bastian 2015, Baldenius et al. 2016). To the best of our

knowledge, the only other theoretical paper that studies accounting-based equity valuation

with real options is G. Zhang (2000). Unlike our paper, G. Zhang (2000) studies a European

rather American real option related to a single investment or abandonment decision, i.e., the

�rm's decision cannot be postponed or advanced in his model.

Replacement cost accounting has also emerged as a natural benchmark in studies employ-

ing the vintage capital framework of Rogerson (2008).8 In Rogerson (2008), the economic

depreciation of assets is deterministic but age-dependent. As a consequence, the vintage com-

position of the �rm's assets in place becomes relevant for valuation. As shown in Nezlobin

(2012), �nancial statements prepared under replacement cost accounting provide informa-

tion useful to investors who do not observe the full investment path of the �rm by properly

re�ecting the vintage composition of its assets in place. In contrast, the main focus of our

paper is on the accounting treatment of uncertainty regarding the economic productivity

of assets and their acquisition price. Accordingly, the role of replacement cost accounting

in our model is to provide information about past shocks to productivity and capital good

8See, for instance, Rajan and Reichelstein (2009), Nezlobin (2012), McNichols et al. (2014), Nezlobin et
al. (2016).
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prices.

The rest of the paper is organized as follows. We describe the �rm's transactions in

Section 2, and the information that is available to investors under alternative accounting rules

in Section 3. The �rm's optimal investment policy and its equity value are characterized

in Section 4. In Section 5, we consider a scenario with reversible investments. Section 6

concludes.

2 Firm's Transactions

Our model builds on the continuous time capacity choice model of Dixit and Pindyck (1994,

Chapter 11). Consider a �rm that makes repeated investments in capital assets and uses the

productive capacity of those assets to make its output. Let Kt denote the �rm's physical

capital stock at time t. Assume that the �rm's operating cash �ow at time t is given by

CFt = XtK
α
t , (1)

where 0 < α < 1 is the elasticity of the operating cash �ow to capital, and Xt is a shift

parameter that re�ects the current demand for the �rm's output. The parameter α is

less than one possibly re�ecting diminishing physical returns to production or a downward-

sloping demand curve for the �rm's product.9 We assume that the shift parameter Xt follows

a geometric Brownian motion
dXt

Xt

= µXdt+ σXdzX , (2)

9For example, the speci�cation above obtains if one assumes (i) the standard Cobb-Douglas production
technology, qt = Ks

t with 0 < s, where qt is the number of units of the output product the �rm can make at
time t, and (ii) constant elasticity demand curves:

Pt (qt) = Xt · q
− 1

η

t ,

where η > 1 is the price elasticity of demand. Then, the total cash �ow is given by:

CFt = Pt (qt) · qt = XtK
s(− 1

η+1)
t .

To ensure that the optimal production volume is always �nite, we impose the requirement that 0 <

s
(
− 1
η + 1

)
< 1. This requirement is satis�ed if the �rm's production technology exhibits decreasing re-

turns to scale (s < 1), or if returns to scale are constant or increasing (s ≥ 1) but η is su�ciently small
(i.e., demand is su�ciently inelastic). It is also straightforward to extend our results to a setting where the
�rm's production function requires a second input, labor, that can be purchased instantaneously after the
�rm observes the current demand.
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where µX is the drift in demand for the �rm's product, σX is the instantaneous variance of

the demand process, and X0 is greater than zero.

The �rm can purchase capital goods instantaneously and frictionlessly at time t at a price

of Pt per unit. The price of new capital goods follows a geometric Brownian motion with

constant drift µP and constant instantaneous variance σ2
P , so

dPt
Pt

= µPdt+ σPdzP , (3)

where P0 > 0. The drift in the price of new assets, µP , can re�ect expected in�ation (if

µP > 0) or the notion that new assets become more e�cient over time due to technology

improvements (if µP < 0).

Let dIt denote the physical quantity of capital goods that the �rm purchases at time t;

the corresponding cash out�ow at time t (cash �ow from investing activities) is then given

by dIt · Pt.10 We assume that the �rm cannot adjust its capital stock downwards; i.e., the

investments in capital goods are irreversible (dIt ≥ 0). The �rm's capital stock evolves

according to the following equation:

dKt = −δKtdt+ σKKtdzK + dIt, (4)

The �rst two terms in the right-hand side of (4) model the economic depreciation of the

�rm's assets in place at time t. The physical rate of depreciation is stochastic with mean

δ and instantaneous variance σ2
K . The last term in the right-hand side of (4) re�ects the

installation of the newly purchased capital goods.

To make our problem as general as possible we allow for the Brownian motions dzX , dzP ,

and dzK to be mutually correlated:

ρXP =
dzXdzP
dt

,

ρKP =
dzKdzP
dt

,

ρXK =
dzXdzK
dt

.

10With this notation, It is the total quantity of capital goods installed from the �rm's inception up to time
t.
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Therefore, our analysis allows for situations where the prices of inputs move together with

the price of output (e.g., costs of constructing and maintaining drilling rigs can be correlated

with the oil price).11 The model also accommodates technology shocks that a�ect, to a

varying degree, both the productivity of the �rm's existing assets as well as the price of

new ones. Lastly, it is also conceivable that shocks to demand in the output market are

correlated with the productivity of the �rm's assets: for example, disruptions in supply

(caused by unexpectedly low productivity of assets) may negatively a�ect the current and

future demand for the �rm's product.

At time t, the �rm observes its current capital stock,Kt, the price of new capital goods, Pt,

and the current demand for its product, Xt and decides whether or not to purchase another

dIt units of new capital goods. The �rm's investment policy, It, is therefore determined by

the three state variables: Kt, Xt, and Pt. The �rm chooses its investments to maximize the

present value of its cash �ows, i.e., it solves the following dynamic program:

max
{It}∞0

E0

[ˆ ∞
0

e−rtCFtdt−
ˆ ∞

0

e−rtPtdIt

]
(5)

s.t. dKt = −δKtdt+ σKKtdzK + dIt,

dXt

Xt

= µXdt+ σXdzX ,

dPt
Pt

= µPdt+ σPdzP ,

I0− = 0, dIt ≥ 0 ∀t ≥ 0,

where r is the �rm's discount rate, assumed to be constant.12 Our analysis can be extended

to a setting in which the �rm's cash �ows are discounted by a stochastic discount factor that

evolves as a geometric Brownian motion.13

Let Vt(Xt, Pt, Kt) denote the �rm's value at time t assuming that it has followed the opti-

mal investment policy, I∗t (Xt, Pt, Kt), in the past. To summarize, the model discussed in this

11Generally, such situations may arise when prices in both product and capital goods markets are a�ected
by common macroeconomic factors.

12Without loss of generality, we assume that the �rm starts it operations at date 0 without any assets in
place, i.e., I0− = 0.

13To implement such an extension, one would have to convert the processes that govern the �rm's cash
�ows from the physical to the risk-neutral measure. Under the risk-neutral measure, the results would be
equivalent to the ones presented in our paper. For papers that model the pricing kernel as a geometric
Brownian motion, see, e.g., Berk et al. (2004) and Li (2011).
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section generalizes the one in Dixit and Pindyck (1994, Chapter 11) to allow for stochastic

shocks to the productivity of assets (dzK) and to the price of new assets (dzP ). Accordingly,

the state variable in our model is three dimensional - (Xt, Pt, Kt). While the �rm makes

investment decisions based on all information available up to the current date, we assume

that the information set of investors who are valuing the �rm is imperfect. Speci�cally,

while the investors know the main parameters of the �rm's economic environment, such as

the elasticity of cash �ow to capital (α) and the drift, variance and correlation parameters

of all stochastic processes (µX , σ
2
X , µP , σ

2
P , δ, σ

2
K , ρXP , ρKP , ρXK), they do not directly

observe the current state variable (Xt, Pt, Kt). To estimate the value of the �rm, they must

rely on the information in the �rm's �nancial statements. In the next section, we discuss

the information available to investors under alternative accounting rules.

3 Investors' Information Set

The information set of investors at time t includes the current and all past �nancial state-

ments of the �rm.14 Formally, we write the investors' information set as:

It =
[
{Bτ}τ≤t , {CFτ}τ≤t , {Pτ · dIτ}τ≤t

]
.

Here, Bτ denotes the book value of assets at time τ , CFτ is the �rm's operating cash �ow at

time τ , and Pτ ·dIτ is the investment cash out�ow.15 It is useful to note that the information

in past income statements is subsumed by It: the �rm's net income from time τ − dt to τ is

given by:

CFτdt− PτdIτ −Bτ−dt +Bτ .

Since It includes the whole history of book values and operating and investment cash �ows,

the path of the �rm's net income is also in It.
We now turn to characterizing the book value of assets under alternative accounting rules.

14In contrast, Nezlobin (2012) assumed that investors observe only the current �nancial statements and
do not have access to the �rm's investment history.

15The amount of gross investment at time t is given by

GIt ≡
ˆ t

0

Pτ · dIτ .

Since the whole history of investments,{Pτ · dIτ}τ≤t, is in It, investors observe the full path of the gross
investment function.
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Under cash accounting, the book value of assets is always set to zero, Bcash
τ = 0; i.e., the

investors only observe the �rm's cash �ows. In our model, the net cash �ows, CFt − PtdIt,
are disbursed to shareholders immediately, so the �rm's cash balance is zero at all times.

Next consider replacement cost accounting where

Brc
t ≡ Pt ·Kt

for all t. Under this rule, at the time of acquisition, new assets are recorded at their cost,

Pt ·dIt.16 At each date subsequent to initial recognition, the book value of assets re�ects past

shocks to both the productivity of assets in place (dzK) and to the price of new assets (dzP ).

In particular, if the price of new capital goods has changed since the time of last investment,

all of the �rm's existing assets must be revalued accordingly. The book value of assets in

place under replacement cost accounting re�ects the amount that the �rm would have to

pay today for new capital goods to replicate the current capacity of its assets purchased in

the past. This de�nition is consistent with the cost approach to fair value measurement as

de�ned in IFRS 13.

It is useful to note that the information set of investors is imperfect even if replacement

cost accounting is used to calculate the book value of assets. To see this, assume that the

�rm has not been investing for some time. Then, investors e�ectively observe the evolution

of the �rm's operating cash �ows, CFt = Xt ·Kα
t , and the book value of assets, Brc

t = Pt ·Kt.

Even though the complete paths of these two processes are revealed to investors over time,

it is still impossible for them to solve for the underlying state variable, (Xt, Pt, Kt), because

it has more dimensions then their information set.17

Several recent studies have employed the vintage capital framework of Rogerson's (2008)

to examine a broad set of questions in managerial performance evaluation, �nancial state-

ment analysis, and equity valuation.18 These studies have shown that a related concept

of replacement cost accounting has a number of desirable features from the perspective of

internal and external users of the �rm's �nancial information. There are two major di�er-

16It will be shown that when the �rm invests, the NPV of its investment is strictly positive (otherwise, it
would be optimal to postpone the investment). Under replacement cost accounting, assets are capitalized at
their acquisition cost, which is less than the present value of cash �ows that they are expected to generate.

17In contrast, in the model of Dixit and Pindyck (1994, Chapter 11), observing the �rm's current operating
cash �ow and the history of investments would be su�cient to solve for the state variable.

18See, for instance, Rajan and Reichelstein (2009), Dutta and Reichelstein (2010), Nezlobin (2012), Mc-
Nichols et al. (2014), Nezlobin et al. (2016).
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ences between the economic setting of this paper and the model in Rogerson (2008). First,

whereas Rogerson (2008) studies assets with age-dependent but deterministic economic e�-

ciency, the e�ciency of capital goods in our model is vintage-independent but stochastic. As

a consequence, the goal of replacement cost accounting in the current setting is not to convey

information about the vintage composition of the �rm's capital stock (as such information

is value-irrelevant), but to re�ect past shocks to asset productivity and capital acquisition

prices. In practice, an ideal implementation of replacement cost accounting would arguably

need to encompass both of these dimensions of economic information.

The second important di�erence between Rogerson's (2008) model and ours is that we

allow for non-trivial e�ects of irreversibility on the �rm's investment policy. Rogerson (2008)

assumes that demand curves shift out over time, which ensures that the irreversibility con-

straint never binds. In our setting, the market conditions can improve or worsen stochas-

tically over time thus leading to a binding irreversibility constraint. It is well known that

the problem of dynamic capacity expansion is generally not analytically tractable when the

economic depreciation of assets is age-dependent (see, e.g., Dixit and Pindyck 1994).

Another accounting system considered in this paper is value in use accounting where the

book value of assets at each point in time, Bviu
t , is set equal to the present value of cash

�ows that these assets are expected to generate in the future. To calculate the present value

of cash �ow attributable to the �rm's existing assets at time t, we assume that It+τ = 0

for τ > 0, i.e., the �rm will not make additional investments after date t. The following

observation provides an expression for value in use.

Observation 1. The present value of cash �ows from the �rm's assets in place at time t is

given by

Bviu
t =

XtK
α
t

r̄
, (6)

where

r̄ ≡ r − µX + αδ − αρKXσKσX −
α (α− 1)

2
σ2
K . (7)

The present value of cash �ows from existing assets can be calculated by capitalizing

the current operating cash �ow, XtK
α
t , with an adjusted interest rate r̄. This rate has an

intuitive interpretation. Assume �rst that there is no physical depreciation of capital goods:

δ = σ2
K = 0. Then, the rate r̄ reduces to the one corresponding to the Gordon growth model,
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r̄ = r− µX . The third term in (7) re�ects the e�ect of the expected physical depreciation of

assets (δ) taking into account the concavity of the �rm's cash �ows in the capital stock (α).

When depreciation is stochastic (σ2
K> 0), the concavity of cash �ows in the capital stock

leads to a Jensen's inequality e�ect: the expected value of future cash �ows declines in σ2
K .

Accordingly, the last term in (7) serves as the concavity adjustment to r̄.19 Lastly, a positive

correlation between shocks to Xt and Kt has a positive e�ect on the expected value of XtK
α
t

(holding the mean and variance of shocks �xed); this e�ect is captured by the penultimate

term in (7). Note that if depreciation is non-stochastic (σK = 0), then the last two terms in

(7) are zero, and uncertainty about future demand does not a�ect the capitalization factor

in the calculation of value in use.

The concept of value in use will prove instrumental in interpreting the expression for

the �rm's value that we derive below. However, it is clear from equation (6) that in the

irreversible investment setting, �nancial statements prepared under value in use accounting

do not provide information useful to investors over and above the �rm's operating cash �ow.

Since we assume that investors know all parameters of the �rm's economic environment

(except for the realizations of stochastic processes), they can calculate r̄ and infer Bviu
t as

Bviu
t =

CFt
r̄
.

Therefore the bounds that investors can derive on the �rm's equity value will be precisely

the same under value in use accounting as under cash accounting.

We model historical cost accounting as a system under which assets are capitalized at

cost when they are acquired, and, at each date thereafter, their book value re�ects their

current productive capacity. Therefore, we assume that shocks to asset productivity are

timely re�ected in the book value of assets, while the shocks to the price of new assets are

not.20 Formally, the book value of assets under historical cost accounting evolves according

19Recall that 0 < α < 1, so α(α−1)
2 < 0. Therefore, r̄ increases in σ2

K , and the present value of cash �ows
from assets in place decreases in σ2

K .
20This de�nition can be consistent with �xed depreciation schedules only if the physical depreciation of

assets is non-stochastic (σK = 0). Since in our model investors observe all cash �ows and all parameters
of the economic environment of the �rm, historical cost accounting in conjunction with �xed depreciation
schedules will not generate information incrementally useful to investors if σK > 0. In fact, we show below
that even if shocks to asset productivity are immediately incorporated in the book value of assets, the range
of valuations consistent with the �rm's fundamentals is the same under historical cost accounting as under
cash accounting.
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to the following process:

dBhc
t = −δBhc

t dt+ σKB
hc
t dzK + PtdIt,

Bhc
0− = 0.

The last accounting system that we consider in this paper is a variant of replacement cost

accounting combined with asymmetric recognition of gains and losses. Speci�cally assume

that all capital goods are initially recognized at their acquisition cost, PtdIt. Then, at each

date, the �rm compares the current carrying value of its assets to their total replacement

cost: if the former amount exceeds the latter, then all assets are written down to their current

replacement cost. However, if the opposite relation holds, then no write-up is recognized.

Under such system, the amount of accumulated depreciation (and revaluations) is strictly

increasing over time and, at time t, is equal to:

sup
τ≤t

(GIτ − PτKτ )
+ ,

where GIτ is the gross investment up to time τ and (x)+ = max {x, 0} . Therefore, under
this rule, the book value of assets at time t, Bcc

t , is given by:

Bcc
t = GIt − sup

τ≤t
(GIτ − PτKτ )

+ . (8)

We will refer to the system described above as conditionally conservative accounting. For

our future discussion, it is important to observe that

Bcc
t ≤ PtKt (9)

for all t, and dBcc
t < 0 only when Bcc

t = PtKt.
21

21To verify inequality (9), substitute the de�nition of Bcct from equation (8) into the left-hand side:

GIt − sup
τ≤t

(GIτ − PτKτ )
+ ≤ PtKt,

or, equivalently,
GIt − PtKt ≤ sup

τ≤t
(GIτ − PτKτ )

+
.

The inequality above must hold by the de�nition of supremum. To verify the second statement, note that
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4 Firm's Value

We now turn to characterizing the �rm's optimal investment policy and the �rm's equity

value. Let ωt denote the ratio of the �rm's operating cash �ow to the replacement cost of

its assets in place:

ωt ≡
CFt
PtKt

=
XtK

α−1
t

Pt
.

We will refer to ωt as the cash return on (economic) assets. Note that when dIt = 0 (the

�rm is not investing), the three processes, Xt, Kt, and Pt, evolve as geometric Brownian

motions, and therefore so does ωt. Cash return on assets increases in demand for the �rm's

output, Xt, and decreases in the price of new capital goods, Pt. Furthermore, since α < 1,

ωt decreases in the �rm's capital stock. In particular, the �rm's investment, dIt > 0, has

a negative e�ect on the cash return on assets ratio due to diminishing returns to capital

inherent in the �rm's production function.

We show in the proof of Proposition 1 that the �rm's optimal investment policy is fully

characterized by a certain threshold value of the cash return on assets ratio, ω∗, that serves

as a re�ecting barrier for the process ωt. When cash return on assets is below this barrier,

ωt < ω∗, the �rm does not invest. When cash return on assets reaches the barrier ω∗, the

�rm makes a sequence of investments that is just su�cient to prevent ωt from crossing the

threshold; the process ωt is thus re�ected from the barrier as illustrated in Figure 1 below.

Intuitively, the �rm expands when the product market is su�ciently pro�table; as the �rm

increases its capacity, the marginal, as well as average, pro�tability of its sales falls and the

�rm returns to the inaction (no-investment) region. After that point, new investments will

be made only when the output market expands su�ciently more to push ωt to the barrier

again. Therefore, after the initial investment at date 0, the cash return on assets ratio will

follow a geometric Brownian motion, re�ected at ω∗.

GIt is monotonically increasing, therefore dBcct < 0 implies that the supremum in the right-hand side of (8)
is attained at t:

sup
τ≤t

(GIτ − PτKτ )
+

= GIt − PtKt.

The equation above is equivalent to Bcct = PtKt.
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Investment threshold, 𝜔∗  𝜔∗  
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Cash return on assets, 𝜔𝑡 

𝜔   

Figure 1: Optimal Investment Policy

We will now write down the Hamilton-Jacobi-Bellman equation that determines the �rm's

value function, V (X,P,K).22 First, assume that the �rm is not investing, dIt = 0. Then, by

Ito's lemma, we can write E [CFdt+ dV ] (i.e., the instantaneous dividend plus the expected

change in the value of future cash �ows) in the inaction region as:

LV · dt,

where

LV ≡ XKα − δKVK + µXXVX + µPPVP +
1

2
σ2
KK

2VKK +
1

2
σ2
PP

2VPP +
1

2
σ2
XX

2VXX+

ρKPσKσPKPVKP + ρKXσKσXKXVKX + ρXPσXσPPXVXP .

On the other hand, since V is the present value of expected cash �ows, it has to satisfy:

E [CFdt+ dV ] = rV · dt.
22To simplify notation, we will drop the subscript t when it is not needed, and use subscripts on V to

denote partial derivatives, e.g., VPX in the expression below denotes the cross-derivative of V with respect
to P and X.
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Therefore, in the inaction region, we have:

rV = LV.

If the �rm's investment is positive, dIt > 0, then rV > LV , since the right-hand side does

not include the (positive) NPV of the marginal investment project.

At times when the �rm invests, the amount of investment is chosen so that the unit price

of new capital goods is equal to the marginal bene�t of investment,

P = VK .

The �rm is in the inaction region when the cost of new capital goods is greater than the

marginal increase in value that a new investment would generate, P−VK > 0. To summarize

the observations above, the �rm's value function is determined by the following variational

inequality:

min (rV − LV, P − VK) = 0 (10)

In the investment region, the �rst term is positive and the second term is equal to zero; in

the inaction region, rV − LV = 0 < P − VK .
Our �rst proposition provides an expression for the �rm's equity value at each date. In

formulating this proposition, the following notation will be convenient. First, let µ̄ be equal

to:

µ̄ ≡ µX − µP − (α− 1) δ +
1

2
σ2
X +

1

2
σ2
P + (α− 1)

(
α− 1

2

)
σ2
K+ (11)

(α− 1) ρKXσKσX − ρPXσPσX − αρKPσKσP .

Note that in the absence of uncertainty, µ̄ would be equal to µX − µP − (α− 1) δ, i.e., it

would be equal to the growth rate of the cash return on assets ratio, ω. Next, let σ̄2 be the

following measure of aggregate uncertainty of the �rm's economic environment:

σ̄2 ≡ σ2
X + σ2

P + (α− 1)2 σ2
K + 2 (α− 1) ρKXσKσX − 2ρPXσPσX − 2 (α− 1) ρPKσPσK . (12)
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Lastly, let λ and A be

λ ≡ − µ̄

σ̄2
+

√( µ̄
σ̄2

)2

+
2r̄

σ̄2
> 0,

and

A ≡ α

(λ+ 1) (λ− αλ− α)
,

where r̄ is given by equation (7). Note that µ̄, σ̄2, λ, A depend only on the parameters of

the model that are known to investors and do not depend on the realizations of stochastic

processes, {Xt, Pt, Kt}.23

Proposition 1. The �rm's equity value at time t is equal to

Vt =
CFt
r̄

(
1 + A ·

[
CFt

Brc
t · ω∗

]λ)
, (13)

where ω∗ is the optimal threshold for investment, given by:

ω∗ =
r̄ · (1 + λ)

α · λ
. (14)

The �rm makes its �rst investment so that

I∗0 =

(
X0

P0

ω∗
) 1

1−α

,

and then invests only when its cash return on assets ratio, ωt, is equal to ω
∗.

The equity valuation formula in (13) has an intuitive interpretation. Recall that the

expected value of cash �ows from assets in place (value-in-use) is given by:

Bviu =
CFt
r̄
.

23To ensure that a solution for the �rm's equity value exists and is always �nite, we impose the following
two constraints on the parameters of the model:

λ >
α

1− α

and
r̄ > 0.
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Proposition 1 shows that the �rm's equity value exceeds the value of cash �ows from assets

in place by the expectation of payo�s from capacity expansion options. The value of these

growth options is given by:
CFt
r̄
· A ·

[
CFt

Brc
t · ω∗

]λ
.

The quantity above is proportional to the present value of cash �ows from assets in place

times the cash return on assets ratio raised to power λ. Growth options become more

valuable as cash return on assets approaches the optimal exercise threshold, ω∗.24 Note that

term in square brackets in the expression above is equal to ωt
ω∗

and thus measure how far the

current cash return on assets ratio is from the investment threshold. Given replacement cost

accounting, investors can accurately value both the cash �ows from assets in place and the

capacity expansion options.25

Recall that the price of new capital goods, Pt, as well as the parameters of the {Pt} process
do not enter the expression for the present value of cash �ows from existing assets. The

parameters of the {Pt} process do, however, a�ect the constants A, λ, and ω∗, and therefore

the valuation of capacity expansion options. Importantly, the value of capacity expansion

options also depends on Pt: the higher the price of new capital goods today, the less likely it

is that the �rm will exercise its growth options soon. Therefore the total value of the �rm's

equity depends on all three components of the state variable, {Xt, Pt, Kt}. Proposition 1,

however, shows that investors do not need to observe the individual components of the state

variable to be able to value the �rm's cash �ows as long as they observe the two aggregate

variables, CFt and B
rc
t .

While we do not explicitly model agency problems in this paper, it is interesting to note

that given replacement cost accounting, investors can always verify that the �rm is indeed

following the optimal investment policy: positive investment should happen if and only if

CFt
Brc
t

= ω∗,

and investments should be chosen such that ω∗ becomes a re�ecting barrier for the cash

24It is straightforward to verify that when the price of new assets is constant over time and the physical
depreciation is non-stochastic, the expression for the optimal investment barrier in (14) reduces to the one
in Dixit and Pindyck (1994, p. 376).

25This is consistent with the intuitive argument in Edwards and Bell (1961) who emphasize that one of
the advantages of the �current operating pro�t�, i.e., net income under replacement cost accounting, is that
it evaluates �rm as a going concern and can be used for predictive purposes (see pp. 99-100).
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return on investment process. Speci�cally, on the optimal investment path, the cash return

on assets ratio must never exceeds ω∗, and the �rm must not invest when ω < ω∗. This �nding

is consistent with the recent results in the managerial performance evaluation literature that

show that replacement cost accounting can be used to achieve goal congruence in settings

with overlapping investments; see, for instance, Rogerson (2008) and Nezlobin et al. (2015).

We now turn to characterizing the bounds on the �rm equity value that investors can

calculate under accounting systems that do not convey enough information to value the

�rm precisely. First, note that immediately after (or very soon after) observing a positive

investment, the cash return on economic assets is close to ω∗. Therefore, even without

directly observing the replacement cost of assets in place, investors know that when PtdIt >

0,26

Vt =
CFt
r̄

(1 + A) . (15)

On the other hand, if PtdIt = 0, it has to be that ωt < ω∗. The �rm's value must then be

bounded from below by the present value of expected cash �ows from assets in place, and

from above by the value of the �rm if it were at the investment threshold:

CFt
r̄
≤ Vt ≤

CFt
r̄

(1 + A) . (16)

It is straightforward to see that if investors only observe the �rm's cash �ows, then the

bounds in (16) are the tightest possible based on the investors' information set, It. Indeed,
if Pt is very large, then the value of growth options approaches zero and Vt → CFt

r̄
. On the

other hand, the price of new assets can be arbitrarily close to

CFt
Kt · ω∗

,

in which case Vt is going to be very close to
CFt
r̄

(1 + A). Given cash accounting, the changes

in Pt since the �rm's last investment do not get re�ected in It. Therefore, any inequality on

Vt that is tighter than (16) will be violated with positive probability.

Since, according to Observation 1, the present value of cash �ows from the �rm's assets

in place is collinear with CFt, the bounds in (16) also cannot be improved under value in use

accounting. Similarly, if the �rm uses historical cost accounting, then changes in Pt when

26Recall that investors observe Pt · dIt as this is the investment cash out�ow.

20



ωt < ω∗ do not a�ect any of the observable variables in It. Therefore we obtain the following

corollary.

Corollary 1. Given historical cost accounting, value in use accounting, or cash accounting,

the tightest bounds on the �rm's equity value that hold almost surely conditional on It are:
If PtdIt > 0,

Vt =
CFt
r̄

(1 + A) ;

if PtdIt = 0,
CFt
r̄
≤ Vt ≤

CFt
r̄

(1 + A) .

Given conditionally conservative accounting, investors know that the book value of assets

understates their replacement cost, and therefore

ωt ≤
CFt
Bcc
t

.

Therefore, the following upper bound on the �rm's value must always hold:

Vt ≤
CFt
r̄

(
1 + A ·

[
CFt

Bcc
t · ω∗

]λ)
.

If the �rm is in the inaction region, the lower bound on the �rm's value from inequality

(16) cannot be improved: as the price of new capital goods goes up, the �rm's value can

get arbitrarily close to CFt
r̄
, and the price increases in the capital goods market do not get

re�ected in It under conditionally conservative accounting. However, if investors observe

a write-down, dBcc
t < 0, then it has to be that Bcc

t = PtKt, and the �rm can be valued

precisely. These observations are summarized in the following corollary.

Corollary 2. Given conditionally conservative accounting, the tightest bounds on the �rm's

equity value that hold almost surely conditional on It are:
If PtdIt > 0,

Vt =
CFt
r̄

(1 + A) ;
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if dBcc
t < 0,

Vt =
CFt
r̄

(
1 + A ·

[
CFt

Bcc
t · ω∗

]λ)
;

if PtdIt = 0 and dBcc
t ≥ 0,

CFt
r̄
≤ Vt ≤

CFt
r̄

(
1 + A ·

[
CFt

Bcc
t · ω∗

]λ)
.

While the actual accounting standards (such as U.S. GAAP and IFRS) are generally dif-

ferent from the stylized accounting rules modeled here, they share certain common features.

For example, under IAS 36, �rms are required to recognize an impairment if the carrying

amount of an asset exceeds the higher of its fair value (which, for an illiquid asset, can be

measured as its replacement cost) and its value in use. In Appendix B, we provide bounds

on the equity value for �rms that account for their property, plant and equipment using the

cost model of IAS 16 and recognize write-downs according to IAS 36.

5 Reversible Investments

In this section, we assume that the �rm's investments are reversible, i.e., the �rm can sell its

used capital goods at a price of new capital goods with equivalent productive capacity. For

technical reasons, we will now consider the optimal investment and equity valuation prob-

lems in discrete time.27 Consistent with previous sections, we allow for stochastic physical

depreciation, stochastic demand and stochastic price of new capital goods.

Let period t be the interval of time between dates t− 1 and t. We assume that the cash

�ow from operations, CFt = XtK
α
t , and the investment cash out�ow, PtIt, are realized at

the end of period t (i.e., just before date t). For notational convenience, we will focus on the

27When the �rm can adjust its capacity both upwards and downwards, the optimal investment policy is
to set the marginal revenue equal to the (properly de�ned) user cost of capital at all times. It can then
be veri�ed that on the optimal investment path, the controlled process, Kt, follows a geometric Brownian
motion, and the control process, It, has an unbounded variation. However, the standard approach in the
singular stochastic control theory limits the set of controls to processes of bounded variation (see Fleming and
Soner, 2006, Chapter 8). Therefore, we will �rst solve the model in discrete time; once we obtain a solution,
we will, for the purposes of comparison, describe its limit as the duration of the time period approaches zero.
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cum-dividend value of the �rm de�ned as:

Vt = CFt − PtI∗t +
∞∑
τ=1

βτ · Et
[
CFt+τ − Pt+τI∗t+τ

]
,

where I∗t+τ denotes the optimal investment policy and β = 1
1+r

is the �rm's discount factor.

We assume the following evolution of stochastic processes, Xt, Pt, Kt:

Xt = gX,t ·Xt−1,

Pt = gP,t · Pt−1,

Kt = gK,t · [(1− δ) ·Kt−1 + It−1] ,

where gX,t, gP,t, gK,t are random variables realized in period t before the operating cash �ow

of that period is observed and the new investment It is chosen. Let θt ≡ (gX,t, gP,t, gK,t)

denote the three-dimensional innovation in the state variable (Xt, Pt, Kt). We assume that

θt are i.i.d. over time, but the components of each θt can be mutually correlated. Since

the distribution of θt is time-invariant, we will drop the time subscript when we refer to

expectations of new innovations, e.g., we will write E [gX ] for Et−1 [gX,t] and E [gXg
α
K ] for

Et−1

[
gX,tg

α
K,t

]
.

Let K̂t ≡ (1− δ) ·Kt−1 + It−1, then we have:

Kt = gK,t · K̂t.

Note further that the �rm's investment in period t can be expressed as:

It = K̂t+1 − (1− δ) K̂tgK,t. (17)

Intuitively, K̂t+1 is the �rm's expectation (at the end of period t) of the productive capacity

of its assets in period t+ 1.28 Note that K̂t+1 includes the productive capacity of the assets

just purchased, It. The total replacement cost of assets in place at date t can therefore be

written as:

RCt = Pt · K̂t+1.

28Since we allow for stochastic depreciation, the �rm does not know the exact capacity of its assets in
period t+ 1 before gK,t+1 is realized.
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In formulating the Bellman equation for the present value of the �rm's optimized cash

�ows, it will be convenient to write Vt as Vt

(
K̂t, Xt, Pt, gK,t

)
. Then, the Bellman equation

takes the following form:

Vt

(
K̂t, Xt, Pt, gK,t

)
= CFt + max

It

{
β · Et

[
Vt+1

(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
− Pt · It

}
.

Now applying (17), we can simplify the equation above as:

Vt

(
K̂t, Xt, Pt, gK,t

)
= Xtg

α
K,tK̂

α
t + Pt (1− δ) K̂tgK,t+ (18)

+ max
K̂t+1

{
β · Et

[
Vt+1

(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
− Pt · K̂t+1

}
.

To solve the equation above we will impose two regularity conditions. First, to ensure

that the �rm's valuation is always �nite, we will assume that Xt does not grow too quickly

relative to Pt:

1 + r > E

[
g

1
1−α
X g

− α
1−α

P

]
.

Second, if the price of new assets is expected to grow very fast, then the �rm could make

in�nite pro�ts by buying capital goods today and selling them in future periods. To avoid

such behavior, we assume that

1 + r > (1− δ)E [gKgP ] .

The following proposition provides an equity valuation formula for a �rm that makes re-

versible investments.

Proposition 2. The �rm's cum-dividend equity value at time t is equal to

Vt = CFt − PtIt + (1 + C1) ·RCt, (19)

and the �rm's optimal investment policy is characterized by:

K̂t+1 = C2 ·
(
Xt

Pt

) 1
1−α

, (20)

where C1 and C2 are two non-negative constants that depend only on the parameters of the
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stochastic processes Xt,Pt,Kt and not on their realizations.29

The valuation equation in (19) states that the cum-dividend value of the �rm at date t

is equal to the current cash �ow (CFt − PtIt) plus another term that is proportional to the

replacement cost of assets in place; in other words, the ex-dividend value of the �rm equity

is equal to (1 + C1) ·RCt. In the investment literature, it is common to decompose the value

of the �rm's equity into two components: the replacement cost of its assets in place and the

discounted sum of future economic pro�ts (see, e.g. Thomadakis 1976, Lindenberg and Ross

1981, Fisher and McGowan 1983, Salinger 1984, and Abel and Eberly 2011). The constant

C1 in our model re�ects the ratio of the present value of future economic pro�ts to the

replacement cost of assets in place. It is important to note that C1 does not depend on the

current state variable (Xt, Pt, Kt). All the value-relevant information about the underlying

state is summarized in the replacement cost of the �rm's assets in place, RCt.

It is interesting to compare our �rm valuation equations in Propositions 1 and 2. It turns

out that replacement cost of assets in place is an important variable for equity valuation in

both scenarios. However, as discussed above, the replacement cost of assets in place alone is

a su�cient statistic for the �rm's equity value when investments are reversible. In contrast,

according to Proposition 1, to value a �rm with irreversible investments in the inaction

region, one needs to observe both the replacement cost of its assets and its operating cash

�ow.

To understand this di�erence between the two results, it is useful to recall that the

underlying state in both scenarios is three-dimensional, i.e., it is determined by variables

Xt, Pt, Kt. The process {Kt} is controlled: it is a�ected by the �rm's investments. When

the �rm can adjust its capital stock in both directions (investments are reversible), the �rm

ensures that the marginal expected bene�t of investment is precisely equal to the marginal

cost of new assets, Pt, at each date. Therefore, the three processes, Xt, Pt and the expected

29We show in the proof of Proposition 2 that the constants C1 and C2 are given by:

C2 ≡
(

αβE [gXg
α
K ]

1− β (1− δ)E [gKgP ]

) 1
1−α

and

C1 ≡
(1− α) (1− β (1− δ)E [gKgP ])

α

(
1− βE

[
g

1
1−α

X g
− α

1−α

P

]) .

We will discuss below the limiting values of these constants as the length of the time period approaches zero.
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forward capacity (K̂t+1) are always linked by equation (20). This e�ectively eliminates one

dimension from the underlying state variable, and, relative to the scenario with irreversible

investments, it is su�cient for investors to observe one �nancial variable less to be able to

value the �rm precisely.

In particular, it is interesting to note that the �rm's equity can also be valued precisely

even in the absence of replacement cost information if �nancial statements are prepared

under value in use accounting. It is straightforward to verify that value in use in the current

setting is proportional to the expected next period's operating cash �ow, Et [CFt+1] , which

in turn is proportional to

Et [CFt+1] ∼ XtK̂
α
t+1.

Given the expression for K̂t+1 in (20), it follows that:

Et [CFt+1] ∼ X
1

1−α
t P

− α
1−α

t ∼ PtK̂t+1 = RCt.

Thus, in contrast to our results in the setting with irreversible investment, replacement

cost accounting is informationally equivalent to value in use accounting. The importance of

replacement cost accounting in our model arises from the investor's need to value the �rm's

growth options.30

When the �rm's investments are irreversible and the �rm is in the inaction region, the

three components of the state variable, Xt,Pt,Kt, move independently: the �rm cannot adjust

its capacity downwards and the output market is not pro�table enough to justify additional

investments, so dIt is zero. Then, investors need to have more information to value the

�rm. Accordingly, the valuation equation in Proposition 1 depends on both CFt and PtKt.

However, when the �rm reaches its investment boundary, investors know that an additional

constraint on the components of the state variable is binding, ωt = ω∗, and the �rm's equity

can be valued based on just one �nancial variable as Corollary 1 demonstrates.

Propositions 1 and 2 also show that the replacement cost of assets in place a�ects the

value of the �rm's equity di�erently in the two scenarios. First, note that the value of a

�rm with reversible investments always (weakly) exceeds the replacement cost of its assets,

Vt ≥ RCt. This has to be the case at all times because otherwise the �rm could simply

30However, observing cash �ows alone is not su�cient for equity valuation purposes in the scenario with
reversible investments. According to equation (19), the �rm's equity value depends on PtK̂t+1, but investors
cannot solve for this quantity if they observe only XtK

α
t and PtIt.
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sell all of its assets today and generate more value than by participating in the output

market in future periods. The same inequality, however, does not necessarily hold for a �rm

with irreversible investments. In particular, note that the expression for Vt in Proposition 1

approaches zero as Xt → 0; so for small values of Xt, the �rm's value will be less than the

replacement cost of its assets.

Second, Proposition 1 states that, controlling for the current operating cash �ow, the

value of the �rm with irreversible investments decreases in RCt. In contrast, in the scenario

with reversible investments, Vt strictly increases in RCt. To understand this di�erence,

consider what happens after a positive shock to the price of new assets, Pt. In both cases,

the value of the �rm's future cash �ows goes down, since the cost of its inputs has gone up.

In the scenario with irreversible investments, the replacement cost of the �rm's assets, PtKt,

goes up since the �rm cannot change Kt in response to the change in Pt. Therefore, an

increase in Pt (an event unfavorable to the �rm) has an e�ect of increasing the replacement

cost of its assets in place, RCt. In the scenario with reversible investments, the �rm can

sell some of its assets at the new price, Pt, and choose a new level of capital stock. In fact,

according to equation (20), the �rm's replacement cost of assets at date t is:

PtK̂t+1 = C2 ·X
1

1−α
t P

− α
1−α

t .

The quantity above decreases in Pt. Therefore, in the scenario with reversible investments,

an increase in the price of new capital goods (which is, again, an event unfavorable to the

�rm) leads to a decrease in the replacement cost of assets after taking into account the �rm's

optimal capacity adjustment. To summarize, our results indicate that while the replacement

cost of assets in place is an important variable for equity valuation in both scenarios, the

exact way this variable enters the equity value function crucially depends on the reversibility

of investments.

In 1980's, under SFAS No. 33, large �rms were required to disclose the current (replace-

ment) cost of their assets such as plant, property, and equipment and inventories.31 Several

papers failed to �nd incremental value of SFAS 33 disclosures over the historical cost earnings

(see, e.g., Beaver and Landsman 1983 and Beaver and Ryan 1985). However, Revsine (1973)

suggested that positive holding gains under replacement cost accounting can be good news

31These disclosures were used by, e.g., Lindenberg and Ross (1981) to construct their Tobin's q estimates.
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for some �rms and bad news for others, depending on how well each �rm is able to react to

price changes in its input markets. Hopwood and Schaefer (1989) provide empirical support

for Revsine's argument. Consistent with the intuition described in this literature, our model

formally shows that the direction of the relation between equity value and replacement cost

of assets depends critically on the �rm's ability to adjust its capital stock downwards. Our

results also help explain the small or negative coe�cients on the book value of assets in

equity valuation regressions; see, for example, Dechow et al. (1999) and Hao et al. (2011).

To conclude this section, we describe the limits of the coe�cients C1 and C2 as the

length of the time period approaches zero. It can be veri�ed that as dt→ 0, the �rm's value

becomes:32

Vt =
(

1 + Ĉ1

)
·RCt

where

Ĉ1 =
(1− α)

α
·

r + δ − µP − 1
2
σ2
K − ρPKσPσK

r − (µX−αµP )
1−α − α

2(1−α)2
(σ2

X + σ2
P − 2ρXPσXσP )

, (21)

and the �rm's optimal investment policy is such that

Kt = Ĉ2 ·
(
Xt

Pt

) 1
1−α

,

where

Ĉ2 =

(
α

r + δ − µP − 1
2
σ2
K − ρPKσPσK

) 1
1−α

. (22)

In the expressions above, the constants µX , µP , σX , σP , σK , ρPK , ρXP are de�ned consistently

with the speci�cation in Section 2.

The expressions in (21) and (22) can be intuitively interpreted in certain special cases.

Assume, for example, that depreciation is non-stochastic, σK = 0, and there is no drift in

the price of new assets, µP = 0. Then, Ĉ2 becomes:

Ĉ2 =

(
α

r + δ

) 1
1−α

.

The denominator of the ratio in brackets, r+ δ, is the standard user cost of capital (see, e.g.,

32When dt → 0, there is no di�erence between the cum-dividend and ex-dividend valuations of the �rm
since the instantaneous cash �ows approach zero. The proof of expressions (21) and (22) is available from
authors upon request.
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Jorgensen 1963 and Abel and Eberly 2011). The remaining terms in the denominator of Ĉ2

in (22) adjust the user cost of capital for uncertainty in the prices of new capital goods and

the productive capacity of assets in place.

Now assume that there is no uncertainty about future values of Xt, Pt, Kt and µP = µX =

0, and consider the expression for the �rm's equity value:

Vt =

(
1 +

(1− α) (r + δ)

αr

)
PtKt.

Intuitively, the �rm's equity value is equal to the replacement cost of its assets, PtKt, plus

the present value of future economic pro�ts:

(1− α) (r + δ)

αr
PtKt.

To see that the expression above is indeed equal to the present value of future economic

pro�ts, recall that (r + δ)PtKt is the user cost of capital employed,
1−α
α

is the optimal mark-

up in the �rm's output market, and 1
r
is the capitalization factor for a stream of payments

equal in expectation. In the special case considered here, there is no drift in the price of

new assets or demand for the �rm's output, µP = µX = 0, so the stream of future economic

pro�ts e�ectively becomes an annuity.

6 Conclusion

Our paper studies the problem of equity valuation based on accounting information in a

setting where the �rm makes investments in capital goods, facing uncertainty regarding

future conditions in its output- and capital goods markets. We initially assume that the �rm's

investments are irreversible and the productivity of its assets is stochastic. Our main result

shows that if the �rm's �nancial statements are prepared using replacement cost accounting,

then outside investors will have su�cient information to value the �rm's equity. The demand

for replacement cost disclosures comes from investors' need to value the �rm's growth options.

In a setting with reversible investments, we show that replacement cost accounting also

provides information useful for equity valuation. However, the relation between the �rm's

equity value and the replacement cost of its assets depends on the �rm's ability to sell its

used capital goods.
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Our results in this paper help understand the informational needs of equity investors.

However, in setting accounting standards, the regulators are concerned with interests of a

broader group of �nancial statement users, including the �rm's lenders and other creditors.

Characterizing the disclosure preferences of broader groups of �nancial statement users in a

setting with real options is an interesting direction for future research.
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Appendix A

Proof of Observation 1

The present value of cash �ows from existing assets is equal to:

Bviu
t = Et

[ˆ ∞
t

e−r(s−t)XsK
α
s ds

]
(23)

with the state variables following

dKt = −δKtdt+ σKKtdzK ,

dXt = µXXtdt+ σXXtdzX .

From the above SDE's, we can solve for Xt and K
α
t :

33

Kt = K0e
−(δ+ 1

2
σ2
K)t+σKzK,t ,

Xt = X0e
(µX− 1

2
σ2
X)t+σXzX,t .

Then, the ratio of XsK
α
s /XtK

α
t is

XsK
α
s

XtKα
t

= exp

(
−
(
−µX + αδ +

α

2
σ2
K +

1

2
σ2
X

)
(s− t) + ασK (zK,s − zK,t) + σX (zX,s − zX,t)

)
.

(24)

Consider the following process:

z̃t ≡ ασKzK,t + σXzX,t ∼ N
(
0,
(
α2σ2

K + σ2
X + 2αρXKσKσX

)
t
)
,

and rewrite equation (24) as

XsK
α
s

XtKα
t

= exp

(
−
(
−µX + αδ +

α

2
σ2
K +

1

2
σ2
X

)
(s− t) + z̃s − z̃t

)
.

33We will write zK,t to denote the value of process zK at time t.
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Then, the value of cash �ows from assets in place can be expressed as:

Bviu
t = Et

[ˆ ∞
t

e−r(s−t)XsK
α
s ds

]
= XtK

α
t

ˆ ∞
t

e−r(s−t)Et

[
XsK

α
s

XtKα
t

]
ds =

= XtK
α
t

ˆ ∞
t

e−(r−µX+αδ+α
2
σ2
K+ 1

2
σ2
X)(s−t)Et

[
ez̃s−z̃t

]
ds.

Since z̃s − z̃t is normally distributed,

Et
[
ez̃s−z̃t

]
= e

1
2(α2σ2

K+σ2
X+2αρXKσKσX)(s−t).

Therefore,

Bviu
t = XtK

α
t

ˆ ∞
t

e−(r−µX+αδ+α
2
σ2
K+ 1

2
σ2
X)(s−t)Et

[
ez̃s−z̃t

]
ds =

= XtK
α
t

ˆ ∞
t

e−r̄(s−t)ds =
XKα

r̄
.

Proof of Proposition 1

Recall that the Hamilton-Jacobi-Bellman equation for the �rm's value is:

min (rV − LV, P − VK) = 0, (25)

where

LV ≡ XKα − δKVK + µXXVX + µPPVP +
1

2
σ2
KK

2VKK +
1

2
σ2
PP

2VPP +
1

2
σ2
XX

2VXX+

ρKPσKσPKPVKP + ρKXσKσXKXVKX + ρXPσXσPPXVXP .

We will �rst construct a solution to the variational inequality (25) that is continuously

di�erentiable everywhere and is C 2 in the inaction region (note that that the PDE in the

investment region, the second part of the variational inequality in 25, does not depend on

second derivatives of V ). The boundary between investment and inaction regions will be

determined jointly with the solution. It will then follow from a standard veri�cation argument

that the value function so constructed is indeed equal to the present value of optimized cash

�ows, and the investment policy characterized by the boundary is indeed optimal.
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We guess the solution of the variational inequality (25) to be of the following form,

V (X,P,K) = XKαf(X,P,K), (26)

where f(X,P,K) is to be determined. Substituting (26) into (25) results in the following

variational inequality for f(X,P,K)

min

(
rf − Lff, P

XKα−1
−KfK − αf

)
= 0, (27)

where

Lff = 1 + µ̄KKfK + µ̄XXfX + µ̄PPfP +
1

2
σ2
KK

2fKK +
1

2
σ2
PP

2fPP+

1

2
σ2
XX

2fXX + ρKPσKσPKPfKP + ρKXσKσXKXfKX + ρXPσXσPPXfXP .

The new coe�cients µ̄P , µ̄K , µ̄X are de�ned as

µ̄P = µP + αρKPσKσP + ρXPσXσP ,

µ̄K = −δ + ασ2
K + ρKXσXσK ,

µ̄X = µX + αρKXσKσX + σ2
X .

(28)

First, we will solve the part of the variational inequality that is responsible for the no-

investment region (rf − Lff = 0). In the no-investment region, we have:

rf = 1 + µ̄KKfK + µ̄XXfX + µ̄PPfP +
1

2
σ2
KK

2fKK +
1

2
σ2
PP

2fPP+ (29)

1

2
σ2
XX

2fXX + ρKPσKσPKPfKP + ρKXσKσXKXfKX + ρXPσXσPPXfXP .

We look for a candidate solution of the following form:

f(X,P,K) = G(X,P,K) +
1

r
. (30)

Then, G(X,P,K) satis�es the following homogeneous PDE:

rG = µ̄KKGK + µ̄XXGX + µ̄PPGP +
1

2
σ2
KK

2GKK +
1

2
σ2
PP

2GPP+ (31)

33



1

2
σ2
XX

2GXX + ρKPσKσPKPGKP + ρKXσKσXKXGKX + ρXPσXσPPXGXP .

Next, we implement the change of variables

p = logP, k = logK, x = logX, (32)

thus leading to

rG = (µ̄K −
1

2
σ2
K)Gk + (µ̄X −

1

2
σ2
X)Gx + (µ̄P −

1

2
σ2
P )Gp +

1

2
σ2
KGkk +

1

2
σ2
PGpp+ (33)

1

2
σ2
XGxx + ρKPσKσPGkp + ρKXσKσXGkx + ρXPσXσPGxp.

Let w ≡ k (α− 1) + x− p, and note that w = lnω. Then, we have:

Gp = −Gw,

Gk = (α− 1)Gw,

Gx = Gw,

Gpp = Gxx = Gww,

Gkk = (α− 1)2Gww,

Gpx = −Gww,

Gkx = (α− 1)Gww,

Gkp = − (α− 1)Gww.

Now implementing the change of variables w = k (α− 1) + x− p, we obtain a second-order

ordinary di�erential equation for G(w) :

1

2
σ̄2G′′ + µ̄G′ − r̄G = 0, (34)

where µ̄ and σ̄2 are de�ned as

µ̄ = µ̄X − µ̄P + (α− 1) µ̄K + 1
2

(σ2
P − σ2

X + (1− α)σ2
K) ,

σ̄2 = σ2
X + σ2

P + (α− 1)2 σ2
K + 2 (α− 1) ρKXσKσX − 2ρPXσPσX − 2 (α− 1) ρPKσPσK .

(35)

By substituting (28) into (35), it is straightforward to verify that the de�nition of µ̄ here is

consistent with the one in equation (11).

34



Our conjectured optimal investment policy will be characterized by a threshold value w∗,

such that the �rm does not invest if w < w∗. Therefore the �rm's value must be always

�nite for w < w∗, and, in particular, it must approach zero as w → −∞ (the �rm's value

must approach zero as Xt goes to zero, since the current and expected future cash �ows are

proportional to Xt). Hence, we choose the following solution of the ODE (34)

G(w) =
A

r̄
exp (λ (w − w∗)) , (36)

where

λ = − µ̄

σ̄2
+

√( µ̄
σ̄2

)2

+
2r̄

σ̄2
, (37)

is the positive root of the quadratic equation

λ2 +
2µ̄

σ̄2
λ− 2r̄

σ̄2
= 0.

The positive root is chosen since lim
w→−∞

G(w) = 0. The constant of integration A and the

no-investment boundary w∗ can be found from the boundary conditions.

The boundary conditions at w = w∗ are the standard value-matching and smooth-pasting

conditions that come from the second part of the variational inequality (27) (see, e.g., Dixit

and Pindyck 1994, p.364). Implementing the same candidate solution (30) and the same

changes of variables as in the no-investment region, the second part of the variational in-

equality becomes:

(α− 1)G′ + αG = e−w − α

r̄
. (38)

The �rst boundary condition (value-matching) states that the equality above has to

be satis�ed at w∗. The second (smooth-pasting) boundary condition can be obtained by

di�erentiating (38) with respect to w:

e−w = (α− 1)G′′ + αG′.

The equality above has to be satis�ed at w∗.

To summarize, we have:

(α− 1)G′ (w∗) + αG (w∗) = e−w
∗ − α

r̄
, (39)
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e−w
∗

= (α− 1)G′′ (w∗) + αG′ (w∗) . (40)

Expressing e−w
∗
from the �rst condition and substituting it into the second, we obtain:

(α− 1)G′′ (w∗) + (2α− 1)G′ (w∗)− αG (w∗) +
α

r̄
= 0. (41)

Now we substitute the expression for G (·) from (36) to �nd A:

A =
α

(λ+ 1) (λ− αλ− α)
.

Finally, substituting (36) and the expression for A above into (39), we obtain:

e−w
∗

=
α

r̄
− (1− α)

A

r̄
λ+ α

A

r̄

=
αλ

r̄ (1 + λ)
.

It then follows that

ω∗ = ew
∗

=
r̄ (1 + λ)

αλ
.

We have now found both constants that were still to be identi�ed in equation (36), A

and w∗. The optimal investment process I∗t is such that w∗ serves as a re�ecting barrier for

wt. The candidate solution is C 1 everywhere. Note further that the process wt will never

cross the threshold w∗, and our solution is C 2 for wt < w∗. Since our solution is C 2 in the

interior of its domain, it is indeed the value function for problem (25), see, e.g., Strulovici

and Szydlowski (2015). Note further that since, by construction, dI∗t ≥ 0, the candidate

control we have identi�ed is monotonic and therefore has bounded variation. It is therefore

indeed the optimal control (see Strulovici and Szydlowski 2015).

Proof of Proposition 2

We need to solve the following Bellman equation:

V
(
K̂t, Xt, Pt, gK,t

)
= Xtg

α
K,tK̂

α
t + Pt (1− δ) K̂tgK,t+ (42)

+ max
K̂t+1

{
β · E

[
V
(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
− Pt · K̂t+1

}
.
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The �rst-order condition for K̂t+1 is:

β · E
[
VK̂t+1

(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
= Pt.

Calculating VK̂ from (42) and substituting into the equation above, we obtain:

β · E
[
αXt+1g

α
K,t+1K̂

α−1
t+1 + (1− δ)Pt+1gK,t+1

]
= Pt.

Therefore,

αβE [gXg
α
K ]XtK̂

α−1
t+1 + (1− δ) βE [gPgK ]Pt = Pt. (43)

Let a ≡ E [gPgK ] and b ≡ E [gXg
α
K ]. Then, from (43) we can �nd the optimal value of

K̂t+1:

K̂t+1 =

(
αβb

1− (1− δ) βa

) 1
1−α
(
Xt

Pt

) 1
1−α

.

Therefore,

C2 =

(
αβb

1− (1− δ) βa

) 1
1−α

.

We will now look for a solution for the �rm's equity value of the following form:

V
(
K̂t, Xt, Pt, gK,t

)
= Xtg

α
K,tK̂

α
t + Pt (1− δ) K̂tgK,t + C3X

1
1−α
t P

− α
1−α

t , (44)

where the constant C3 is to be determined. Given the candidate solution in (44), we can

calculate Et

[
V
(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
as:

Et

[
V
(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
= Cα

2

(
Xt

Pt

) α
1−α

Xtb+ C2Pt

(
Xt

Pt

) 1
1−α

Pt (1− δ) a+

+ C3X
1

1−α
t P

− α
1−α

t E

[
g

1
1−α
X g

− α
1−α

P

]
.

Let c ≡ E

[
g

1
1−α
X g

− α
1−α

P

]
. Then, the expression above can be simpli�ed to:

Et

[
V
(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
= X

1
1−α
t P

− α
1−α

t {bCα
2 + C2 (1− δ) a+ C3c} .

Now substituting the candidate solution (44) and the expression forEt

[
V
(
K̂t+1, Xt+1, Pt+1, gK,t+1

)]
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above into the Bellman equation (42) and simplifying, we get:

C3 = β {bCα
2 + C2 (1− δ) a+ C3c} − C2.

From this we can �nd C3:

C3 =
C2

1− βc
(
βbCα−1

2 + (1− δ) βa− 1
)
.

Now note that the candidate solution in (44) can be written as:

V
(
K̂t, Xt, Pt, gK,t

)
= Xtg

α
K,tK̂

α
t + Pt (1− δ) K̂tgK,t + C3X

1
1−α
t P

− α
1−α

t

= CFt + Pt (1− δ)Kt + PtIt − PtIt + C3X
1

1−α
t P

− α
1−α

t

= CFt − PtIt + PtK̂t+1 +
C3

C2

C2

(
Xt

Pt

) 1
1−α

Pt

= CFt − PtIt + PtK̂t+1 (1 + C1) ,

where C1 ≡ C3

C2
. It remains to simplify C1 as follows:

C1 =
1

1− βc
(
βbCα−1

2 + (1− δ) βa− 1
)

=
1

1− βc

(
1− (1− δ) βa

α
+ (1− δ) βa− 1

)
=

(1− α) (1− (1− δ) βa)

α (1− βc)
.
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Appendix B

In this section, we consider an application of our model to valuation of a �rm that i) uses

the historical cost model of IAS 16 to calculate the book value of its property, plant and

equipment, and ii) recognizes write-downs as prescribed by IAS 36. Under IAS 36, an

impairment loss has to be recognized if the carrying amount of an assets is greater than the

maximum of its fair value less costs of disposal and value in use. The de�nition of value in

use in IAS 36 is consistent with that used in our paper: it is equal to the present value of

future cash �ows expected to be derived from an asset. Di�erent approaches to fair value

measurement are de�ned in IFRS 13. According to this standard, the fair value of an asset

should be measured as the price of an identical asset in an orderly transaction (if such price is

observable) or using an appropriate valuation technique such as the the cost approach or the

income approach.34 Since in the setting with irreversible investments there is no secondary

market for used capital goods, we will assume that the �rm uses the cost approach to fair

value measurement.35

Under IAS 36, when an impairment is recognized, the �rm has to disclose whether the new

book value of the asset re�ects its fair value or value in use. In addition, past impairments

are reversed if the recoverable amount increases, but such reversals cannot lead to a carrying

amount greater than what it would have been had not impairment loss been recognized

before. In this setting, we obtain the following bounds on the �rm's equity value.

Corollary 3. Assume the �rm uses the cost approach to fair value measurement and recog-

nizes impairments according to IAS 36. Then, the tightest bounds on the �rm's equity value

that hold almost surely conditional on It are:
If PtdIt > 0,

Vt =
CFt
r̄

(1 + A) ; (45)

if a revaluation to replacement cost is recognized (Bt = Brc
t ),

Vt =
CFt
r̄

(
1 + A ·

[
CFt
Bt · ω∗

]λ)
; (46)

34IFRS 13 explicitly states that value in use is not fair value (see paragraph 6).
35We also assume that the cost of disposal is immaterial.
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if a revaluation to value in use is recognized,

CFt
r̄

(
1 + A ·

[ r̄
ω∗

]λ)
≤ Vt ≤

CFt
r̄

(1 + A) ; (47)

if Bt >
CFt
r̄
,

CFt
r̄
≤ Vt ≤

CFt
r̄

(
1 + A ·

[
CFt
Bt · ω∗

]λ)
; (48)

otherwise
CFt
r̄
≤ Vt ≤

CFt
r̄

(1 + A) . (49)

We now brie�y discuss the �ve cases described in the corollary above. First, if new

investment is observed, PtdIt > 0, then the �rm is at the investment threshold and its

equity can be valued accordingly. If the �rm recognizes a write-down (or reverses a past

write-down) to fair value, then investors know that the current book value of assets re�ects

their replacement cost, and the �rm's equity can be valued according to equation (46). If a

write-down to value in use is recognized, then the new book value of assets is equal to

Bt = Bviu
t =

CFt
r̄

and it has to be that Bt ≥ Brc
t (otherwise a write-down to fair value would have been

recognized). It follows that

Vt =
CFt
r̄

(
1 + A ·

[
CFt

Brc
t · ω∗

]λ)
≥ CFt

r̄

(
1 + A ·

[
CFt

Bviu
t · ω∗

]λ)
=
CFt
r̄

(
1 + A ·

[ r̄
ω∗

]λ)
,

and inequality (47) obtains.

Now assume that investors observe a book value of assets that is greater than the value

in use:

Bt >
CFt
r̄
.

Then, it has to be that

Bt ≤ Brc
t

since otherwise a write-down would have been recognized. Therefore, in this case, investors
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know that
CFt
r̄
≤ Vt ≤

CFt
r̄

(
1 + A ·

[
CFt
Bt · ω∗

]λ)
.

Lastly, when Bt < Bviu
t , the �rm's replacement cost of assets can be arbitrarily close to zero

or CFt
ω∗

, and the tightest inequality that holds almost surely is given by (49).
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